Enterprise Mobility, Mobile Infrastructure
Article | June 16, 2023
In the United States, private networks saw the sun for the first time in the early 1970s by AT&T. The networks were majorly operated over telecommunication networks. In the 1990s, with the evolution of Internet technology, a new type of network known as virtual private networks emerged. This type of network was built on public infrastructure, and the data was encrypted to protect it from eavesdroppers.
Nowadays, networks developed by businesses are called Enterprise Private Networks (EPN) when privacy is maintained via security processes and tunneling protocols such as Layer 2 Tunneling Protocol.
The objective of an EPN is to provide high-speed internet access and data sharing within an organization. Businesses can utilize Wi-Fi in their workplaces to share internet access and resources. This type of private network also employs routers, switches, fiber optics, virtual devices, and modems. Security is also a significant factor while developing an enterprise network. Different firewalls are set at access points to ensure safe data transfer between systems.
Enterprise private networks can be built in various ways, including:
Virtual private network (VPN)
Local area network (LAN)
Wide area network (WAN)
Cloud-based networks
Let’s dive deeper into EPN.
Enterprise Private Network: Reasons to Deploy It Today!
Giving its intended objective, enterprise private networks can be considered to provide a variety of conceivable benefits to an organization.
Enhancing Network Security
A company must adhere to strict procedures to safeguard its security. Networks are vulnerable to cyberattacks, and some business data contains sensitive information that might be lost or acquired by the wrong people. However, data circulation is critical to long-term business operations, which is why incorporating an enterprise private network is a wonderful way to keep security issues at bay even while allowing the organization to more easily manage its critical operations. This is a key reason why most businesses do not hesitate to use EPN, regardless of how difficult it is to set up or the upfront costs associated with it.
Economizing Measures
Keeping overheads to a minimum is critical for achieving a convincing ROI at the end of the day. Most businesses take stringent steps to ensure that they remain profitable. Cutting major expenditures is a helpful technique to do this, and the deployment of EPN is a perfect example. Because important business data can be exchanged over the network where key stakeholders can access it, the expense of physically transferring data and resources from one place to another is reduced. Moreover, a significant amount of valuable time is saved since any type of data and resources can be uploaded across the network in a matter of minutes.
Centralization
Another important element that is essential to an organization's success is business continuity. Different departments of an organization are interconnected to one another through an enterprise private network and can effortlessly share resources with one another. As earlier stated, it enables time efficiency and allows companies to keep progressing toward gradually achieving their day-to-day demands.
Enterprise Private Network: A Catalyst to 5G Digital Transformation
Businesses now depend on technology that has undergone significant transformation in recent years. Organizations are increasingly relying on feature-rich apps to operate their operations and drive innovation. Connectivity is at the heart of keeping everything operating smoothly and effectively, and 5G is expected to provide even more pace and potential. 5G is enticing because its infrastructure differs from prior generations of cellular networks. The 3G and 4G networks were designed with hardware-based network operations in mind. 5G, on the other hand, is 'cloud-native,' with network functions stored in software as a Virtual Network Function (VNF) or Cloud-native Network Function (CNF). 5G has the ability to drive digital transformation for companies and organizations by providing faster connection speeds, reduced latency, higher capacity, and better security. Organizations can obtain significant business advantages in automation, security, and safety when 5G is used in combination with a private cellular network.
The Importance of 5G on Private Networks
Speed
5G provides better bandwidth than 4G LTE networks, which is critical for data-intensive applications.
Latency
Robotics, manufacturing, remotely operated systems, and vehicle-to-vehicle communications all need low latency.
Network Slicing
The 5G network core offers network slicing, allowing network operators to virtualize network traffic, often in a cloud-based flexible environment.
Increased Connection Density
5G will ultimately support 100 times more connected devices per square kilometer, up to one million devices.
Multi-Access Edge Computing (MEC)
5G Multi-Access Edge Computing (MEC) moves computational power closer to the network edge, reducing the time required to send data to a centralized data center.
Wi-Fi 6
While 5G has considerable benefits over Wi-Fi, the new Wi-Fi 6 version also has greater capacity, reduced latency, and faster speeds than its predecessor, Wi-Fi 5.
Industries Leveraging EPN to Enhance Their Capabilities
With the expanding digital transformation, business interest in private networks is growing. Enterprises can deploy such networks to explore a broad range of wireless use cases and provide access to areas that are not covered by a public network. These networks can also be customized to meet the needs of certain industries and businesses. With the arrival of 5G, private networks enabled by the technology are positioned to stimulate innovation and allow next-generation enterprise transformation across a wide range of industries. Industries leveraging 5G-enabled enterprise private networks are:
Healthcare
Healthcare tops the list of rapidly growing industries, requiring private networks. The unprecedented burden caused on healthcare systems worldwide by the COVID-19 pandemic has driven the need for improved connectivity and modernization of infrastructure, prompting hospitals to establish private networks.
Manufacturing
The manufacturing industry is undergoing a significant digital transformation, which is enabling various new use cases like automated manufacturing. In the industrial arena, private 5G networks play a critical role in increasing the density and efficiency of automation technologies like collaborative mobile robots, automated guided vehicles, AR predictive maintenance, and virtual reality remote devices.
Smart Facilities
By reducing the reliance on third-party wireless service providers, private 5G networks enable these establishments to build and install the infrastructure most suited to their digital transformation roadmap.
Logistics
Another high-potential use case for private 5G networks is the logistics industry. With increasing global e-commerce adoption, the continuous movement of products through all logistical checkpoints—including warehouses, ports, and distribution centers—must be monitored and linked through a diverse variety of corporate mobility devices.
Mining
Another industry with significant potential for private 5G networks is mining. Mine operators want dependable wireless connections in order to leverage digital technologies, but they are often unable to introduce wireless communications to underground locations while still meeting the essential connectivity demands of machinery and mobile employees in open-pit locations. Private networks, which have fewer access points than Wi-Fi, can overcome these difficulties by providing a stable and widespread internet connection to machines, vehicles, and workers throughout a mine. This leads to improved safety, increased production, and a lower carbon footprint.
Some of the other industries are Oil and gas, Education, Ports, Smart Cities, etc.
Rising Demand for Enterprise Private Network (EPN)
As per research analyst Leo Gergs from ABI Research, there are a couple of factors that are causing the surge in demand for private networks for enterprises. These factors are:
Rise in demand for automation and enterprise digitalization in every sector of the market, including industrial manufacturing, logistics, oil and gas, etc., because of COVID-19.
The private 5G network has arrived, bringing with it irresistible features and use cases for businesses from all industries.
Private networks depend on technology from both public carrier networks and business IT, bringing together two disciplines that had previously evolved in quite distinct directions. Industry digitalization, the convergence of telecom and IT, edge migration of cloud apps, and increased spectrum availability are all combined to set the scenario for exploding demand for private 5G. A private 5G network is an enterprise-specific network that offers communication connections to people or items belonging to a single company as well as unique services required for the enterprise's operations. Enterprises across sectors are crunching the math on private 5G, from factories to farms to hospitals to hotels.
According to ABI Research, heavy industrial verticals will increase demand for private network installations. Industrial manufacturing and energy production (including mining, oil and gas, and logistics) will contribute $32.38 billion in private network revenues by 2030, accounting for half of the $64 billion in total private network revenues. The need for private 5G networks is increasing as 5G arrives, allowing compelling business use cases and favorable legislative developments on spectrum availability for corporations. TBR projected that the market for private 5G networks would reach $7.5 billion by 2025, rising from $200 million in 2020.
Carving the Future
With every new cutting-edge technology comes a leap of faith. Businesses and industries can expedite their digital journeys by using 5G private networks to offer secure connections while gathering and managing huge amounts of business-critical data. Private 5G is not simply a new paradigm for network operators; it's also an incredible opportunity for public and private organizations to unleash efficiency, exploit real-time data, and boost revenue.
FAQ
How Does Enterprise Private Network Work?
An enterprise private network is a business computer network that allows business organizations with several offices to securely connect to each other through a network. The primary purpose of an enterprise private network is to share system resources.
How to Set Up Your Private 5G Network?
To build a private 5G network, businesses need to:
The first step is to get the spectrum right-to-use.
Acquire 5G equipment such as base stations, mini-towers, and small cells from network equipment or infrastructure providers.
Integrate equipment with edge devices like smartphones, routers, sensors, etc.
What Is the Cost of Building a 5G Network?
A modest tower and 5G cell site will cost between $30,000 and $50,000. If the wireless network is to function during a power failure, the cell site will also need commercial power and batteries.
Read More
Enterprise Mobility
Article | June 15, 2023
Telecommunications conglomerate Verizon has partnered with 3D development platform Unity to create entertainment applications and enterprise toolkits that can render 3D environments almost instantaneously, without the need for expensive hardware.
In a press release, Verizon said products from this collaboration will address the demand for instantaneous content in industries such as gaming, retail, and sports, where emphasis is placed on real-time digital immersion.
“We are entering an era of technology-led disruption where 5G and MEC will not only transform the full enterprise lifecycle, it will change the way consumers experience gaming and entertainment,” said Verizon Chief Executive Officer Tami Erwin.
These products will utilise 5G and Mobile Edge Computing (MEC) technology, taking the best of both worlds to enhance the digital experience for consumers.
The concept of edge computing has actually been around for roughly three decades, but it wasn't until recently that we've been able to apply it to Internet of Things (IoT) devices. Edge architecture reduces latency by moving computer services closer to the source — the "edges" — of the data. This not only decongests the centralised cloud of information, but also decreases the distance the data needs to cover to reach user terminals.
Meanwhile, 5G is the highly anticipated next generation broadband network that promises to deliver high speeds with just millisecond latencies. Despite the pandemic, its rollout hasn’t slowed down at all, with countries like China, South Korea, and the US getting a first taste of the technology.
The promise of lightning-fast connections, however, comes at a steep cost: 5G stations consume plenty of energy to work.
Though much of 5G's advantages come from its streamlined digital routing capabilities, it's also underpinned by a powerful network of hardware components — more precisely, printed circuit boards (PCBs). To answer the demand for more energy, engineers use ties to meet PCB requirements for solving the challenges that come with powering a standard board. These include considerations like signal paths and planar delays, among others. Placing the net ties at the right junctions distributes energy more evenly, thus providing efficient power delivery to 5G networks.
Despite all the touted capabilities of 5G, experts have flagged cybersecurity as one major concern. As a new innovation, 5G is still fairly unregulated, leaving loopholes and security gaps that cyber criminals can exploit. For instance, the expansion of bandwidth coverage actually opens up vulnerabilities and additional avenues for cyber attacks. Furthermore, the hyper connected nature of IoT devices makes it easier for hackers to gain access to different networks, both private and public; and unwitting users can potentially expose their contacts to virtual attackers.
Because of these threats, experts urge telecom companies to lay down a solid bedrock for 5G security before finalising the pivot towards it. For now, it remains to be seen how legislators and regulators will implement standards to guide the public in its use of 5G.
Amid this concern, Verizon and Unity are hopeful that their collaboration — and the marriage of 5G and MEC technology — will be a game changer in the gaming, retail, and entertainment industries.
“We know the world is demanding high-speed, AAA content, whether it’s an educational augmented reality application or a robot running a simulation of a digital twin,” Unity Vice President for Solutions Ryan Peterson said.
“5G is the key piece for us to facilitate these real-time 3D experiences broadly and to better meet the demands of the real-time economy.”
Read More
5G
Article | May 18, 2023
Antennas are fundamental to the performance of connected devices, but are often implemented as an afterthought, resulting not only in sub-optimal performance, but also in less-than-ideal form factor. It can also have a negative impact on cost for the device as a whole. It is therefore essential that organisations prioritise antenna design as part of a holistic device design philosophy – bear in mind that it is practically impossible to fix bad antenna design. Early decisions need to be made regarding the relative merits of embedded or external devices and then attention can turn to optimising antenna integration.
Read More
Article | February 12, 2021
With the emergence of new technologies, the networking field is transforming rapidly. The epicenter of networking has shifted to clouds from datacenters. Similarly, the focus of networking has also moved towards mobile devices. In the upcoming years, tech trends will hugely impact the way a business operates and bring the rise of Industry 4.0.
Top Networking Tech Trends
1. 5G and WI-FI 6
Undoubtedly, the deployment of next-generation wireless networking will be around the corner. In the arena of mobile devices, 5G is set to rewrite the new technological possibilities. It will uncover the true power of augmented reality and IoT.
On the other hand, the next journey of the WI-FI Standard - WI-FI 6 or 802.11ax will become the step for a non-stop innovative world. It will add density, flexibility, scalability, and efficiency for increasing the internet speed of multiple connected devices. That will in return improve the working capabilities of businesses.
2. SD-WAN
As the name suggested, SD-WAN is the software-defined approach for managing WANs. It can lower operating costs while amplifying the usage of resources in multiple deployments. It increases the security level for applications and enables admin to use bandwidth efficiently. It will become the standard format for wide area networks and will help in connecting public cloud resources and branch offices.
3. Secure Access Service Edge (SASE)
SASE is a new networking technology that converges functions of different security and network solutions into one global cloud service. It is an architectural alteration of networking and security that supports IT to offer prompt, holistic, and versatile service to the digital business. It amplifies the security postures, improves access performance, and diminishes operational complexity. It helps organizations to develop new products faster and respond to business needs or changes.
4. IoT/Edge Networking
In comparison to traditional cloud computing, edge computing is the idea to bring data and computers much closer to the end-users. It reduces the need for long-distance communication among client and server, and lessen the cost of bandwidth. It will remain to achieve drift in companies while they decentralize their networks.
5. Automation in Networking
Network automation is the process that automates security and network to maximize the functionality and efficiency of the network. It will help IT companies to deploy applications faster. It is set to take the digital transformation to the next step by automation of network and security operations. It reduces the risk of downtime and failure of the network while making the management faster, simpler, and easier.
Connecting to Future Networking
Based on the trends that will reshape the networking world, we are going to see a significant change in the tech landscape. 2021 will be transformative for every person around the world. Several long-held concepts and infrastructure will be replaced by new ones making the network a vital asset to the business. Besides, the organizations are ready to take advantage of them in a way that was never imagined before. For any question or concern, have an IT consultation from the experienced.
Read More