Why Onboarding New Devices is Impossible on Your Network

For most workplaces, wireless networking (WiFi) is as important as utility power, air conditioning, heating, and running water. Because of this, many kinds of companies invest in standby power generators to largely eliminate the business interruption from a loss of utility power.In much the same way that your employees and customers would get super-cranky if your location lost its air conditioning or heating for several hours at an inopportune time.

Spotlight

Adaptiva

Adaptiva is a leading, global provider of IT systems management solutions that advance the power of Microsoft System Center Configuration Manager (SCCM). Founded in 2004 by the lead architect of Microsoft SMS 2003, Adaptiva enables IT professionals to securely speed enterprise-wide software deployments without adding costly servers or throttling network bandwidth.

OTHER ARTICLES
Network Infrastructure, Network Management

5G vs. Wi-Fi 6: How Two Wireless Technologies are Revolutionizing the Internet of Things

Article | July 27, 2023

The year 2020 was supposed to be a breakthrough year for many technologies but, most businesses have now been forced back into building an infrastructure to transit their workforce to work remotely and ensure continuity of workflow. Nevertheless, an unprecedented set of events have pushed several industries to accelerate the adoption of technologies as they continue to work from home. 5G and Wi-Fi 6 are two tech advancements that have been turning eyes around the world since their introduction. The two wireless technologies are well on their way to revolutionize the Internet of Things as businesses move fast towards digitization and the world is excited. Table of Contents: - Wi-Fi 6: A Breakthrough in Wireless Technology - 5G: For a Better Connected World - How are Wi-Fi 6 and 5G Transforming the IoT? - 5G and Wi-Fi 6: Rivals or Allies? Wi-Fi 6: A Breakthrough in Wireless Technology The next-generation Wi-Fi with boosted speed was introduced last year to meet the demand for faster internet amongst the rising internet users. But, Wi-Fi 6 is simply more than a tweak in the speed. Technically called 802.11ax, Wi-Fi 6 is the advancement in the wireless standard doing the same basic things but with greater efficiency in the device-dense areas, and offering much greater bandwidth than its predecessor 802.11ac or Wi-Fi 5. Wi-Fi 6 promises a speed up to 9.6 Gbps up four times than that of Wi-Fi 5 (3.5Gbps). In reality, this is just a theoretical maximum that one is not expected to reach. Even still, the 9.6Gbps is higher speed and doesn’t have to go to a single device but split up across a network of devices. A new technology in Wi-Fi 6 called the Target Wake Time (TWT) lets routers set check-in times with devices, allowing communications between the router and the devices. The TWT also reduces the time required to keep the antennas powered to search for signals, which in turn also improves battery life. Wi-Fi 6 also comes with a new security protocol called WPA3, making it difficult to hack the device passwords by simple guesswork. In short, Wi-Fi 6 means better speeds with optimized battery lives, and improved security. 5G: For a Better Connected World 5G is the next in line to replace 4G LTE. While Wi-Fi covers small scale internet requirements, cellular networks like 5G are here to connect everyone and everything virtually on a larger scale. The technology is based on the Orthogonal frequency-division Multiplexing (OFDM) that reduces interference by modulating a digital signal across several channels. Ability to operate in both lower bands (like sub-6 GHz) and mmWave (24 GHz and above), 5G promises increased network capacity, low latency and multi-Gbps throughput. 5G also uses the new 5G NR air interface to optimize OFDM to deliver not just better user experience but also a wider one extending to many industries, and mission-critical service areas. The 5G technology, in a nutshell, has brought with it ultra-high speeds, increased and scalable network capacity, and very low latency. How are Wi-Fi 6 and 5G Transforming the IoT? 5G and Wi-Fi 6 will fill up the speed gaps that our existing networks are not able to especially, in crowded homes or congested urban areas. It's not just about the speed. The two wireless technologies will increase network capacity and improve signal strengths. On the business front, 5G and Wi-Fi 6 are both living up to the hype they created since their introduction. Wi-Fi 6 has emerged, as the enabler of converged IoT at the edge. It has put IT into OT applications, connected devices and processed data from devices such as IP security cameras, LED lighting, and digital signage with touch screen or voice command. Wi-Fi 6 can now be used in office buildings for intelligent building management systems, occupancy sensors, access control (smart locks), smart parking, and fire detection and evacuation. It’s (Wi-Fi 6) built for IoT. It will connect many, many more people to mobile devices, household appliances, or public utilities, such as the power grid and traffic lights. The transfer rates with Wi-Fi 6 are expected to improve anywhere from four times to 10 times current speeds, with a lower power draw, i.e. while using less electricity. - Tom Soderstrom, IT Chief Technology and Innovation Officer at NASA’s Jet Propulsion Laboratory (JPL) Similarly, 5G will open doors for more devices and data. It will increase the adoption of edge computing for faster data processing close to the point of action. The hype around 5G is because of the three key attributes it comes with: enhanced mobile broadband (eMBB), ultra-reliable low-latency (uRLLC), and massive IoT device connectivity (mMTC). But there is the fourth attribute that sets it apart from its predecessor: use of a spectrum that operates at the low-end frequency range (typically 600 MHz). Called as ‘low-band 5G’, it delivers high speeds with signals that go for miles without propagation losses and ability to penetrate obstacles. The 5G operates in the new millimetre-wave bands (24 to 86 GHz) delivering more capacity to enable many low-power IoT connections. If we were to point down the benefits, these two wireless technologies are bringing to the Internet of Things those would be: Increased Human-Device Interactions Increased Data and Devices More IoT investments Advancing to the Edge Acceleration towards Industrial IoT Enhanced use of IoT devices Better VUI 5G and Wi-Fi 6: Rivals or Allies? In February, Cisco estimated that by 2023 M2M communications will contribute to 50% or about 14.7 billion of all networked connections. Cisco’s Annual Internet Report reveals that 5G will enable new IoT applications with greater bandwidth and lower latencies and will accelerate innovations at scale. The same report estimates that 10.6% of global mobile connections in 2023 will be 5G, while Wi-Fi 6 hotspots will be 11.6% of all public Wi-Fi hotspots growing 13 times from 2020 through 2023. Wi-Fi6 will serve as a necessary complement to 5G. A significant portion of cellular traffic is offloaded to Wi-Fi networks to prevent congestion and degraded performance of cellular networks (due to demand). - Thomas Barnett, Director of Thought Leadership, Cisco Systems The two technologies are here to feed different data-hungry areas with gigabit speeds. With lower deployment costs, Wi-Fi 6 will be dominating the home and business environments where access points need to serve more users covering devices like smartphones, tablets, PCs, printers, TV sets, and streaming devices. With an unlicensed spectrum, the performance of Wi-Fi 6 depends on the number of users, that are using the network at the same time. 5G, with its longer range, will deliver mobile connections and accelerate smart city deployments and manufacturing operations. Like LTE, 5G speeds will depend upon users’ proximity to base stations and the number of people using that network. The performance of the two depends largely on the area where they are being deployed. For instance, Wi-Fi can very well handle machine-to-machine communications in a managed manufacturing unit, whereas 5G can enhance campus-wide manufacturing operations efficiently. Businesses will have a decision to make which among the two wireless networks fulfils their data appetite. In conclusion, the two wireless technologies continue to develop in parallel and causing the next big wave in the Internet of Things.

Read More
Enterprise Mobility

5G Enterprise Private Network: 9 Ways to Scale Your Business

Article | June 15, 2023

Something revolutionary that solves problems becomes a product or service with many trade secrets you cannot afford to let loose in the market. All small, medium, and large businesses worry about how vulnerable they are to threats as far as data sharing within the organization is concerned. This is where a private network comes in. Every business wants to take a technological leap for scalability. Two of the factors that private networks address are independence from commercial carriers for the network and maintaining the privacy of trade secrets. This helps achieve long-term goals to scale your business. Powering your enterprise private network with the futuristic speeds of 5G can help your business achieve two goals at once. Take a look at why 5G has now started to matter even more. Why 5G? By 2026, the 5G market will reach $667.90 billion, with a CAGR of 122.3% from 2021 to 2026. It is estimated to go beyond $1.87 trillion by 2030. This massive technological transition will forever change how we communicate, process information, and connect with the cloud. A boost in turnkey research and development is one of the vital benefits of 5G that will help your business be one step ahead in the market. What Makes the 5G Enterprise Private Network Ideal for Small and Medium-Sized Businesses? A private enterprise network is VPN, LAN, WAN, or cloud-based. High-speed internet and low-latency data sharing or transfer are achieved using fiber optics in a 5G EPN. Expect superior service security, network slicing, enhanced service quality, and no risk of network congestion. Design your 5G EPN as per the software integrations required for your small and medium-sized business. This will allow seamless integration for present and future needs. 5G is about 100 times faster than 4G, leading to incredible speeds and unlocking many never-seen-before possibilities accelerating the speed of research for your enterprise. The network efficiency and the traffic capacity it can handle are 100x. Connecting and sharing data in almost real-time is made possible with 5G. This means, a private 5G network can reduce the infrastructure needs of relatively more demanding managed wired networks for small and medium-sized businesses supporting 5G ecosystems. But it will keep up with the most advanced wireless technologies of the future and stop supporting older ones. In addition, 5G supports lower power consumption than 4G during data transmission. This means enterprises get better battery life on devices running 5G, including 5G IoT devices. How Secure is a 5G Enterprise Private Network? The 5G enterprise private networks are integrated or hybrid EPNs (enterprise private networks) and independent EPNs. It depends on whether your business wants to lease 5G spectrum from the government or a mobile network operator (MNO) and whether you will use a hybrid or independent EPN. • Integrated 5G EPN: A small business can lease a private 5G line from an MNO. A public 5G network backs a virtual private network (VPN) for medium-to-small businesses. On the other hand, MEC and UPF from a public 5G network are used to set up a local network for large businesses. • Independent 5G EPN: This is the most secure type of 5G EPN, the independent 5G EPN. It is independently built for your enterprise, owned, operated, and managed by you. You will be handling the RAN, core, edge computing nodes, and the wireless spectrum reserved for your use. These are mostly the goals of a large business that sends and stores data that needs to be very secure. An independent 5G EPN is the best solution for large enterprises looking for the most secure private network. Also, it applies to businesses dealing with massive amounts of data. Why Use the Cloud for Storage and Retrieval of Data in 5G EPN? Access computing resources, data storage, development tools, and applications across the internet with the help of the cloud. The combined features of 5G and a private enterprise network create a healthy environment to implement cloud infrastructure. When thinking about using the cloud to store and get data in a 5G EPN, keep in mind the good things about it. Interconnected, shared resources 5G speed Improved reliability Increased data accessibility Better privacy and security Efficient connectivity Now that we have learned networking fundamentals for a better 5G EPN are resolved with the help of the cloud, let us discover how it can help your business scale. How Can Your Small, Medium, or Large Business Scale up With a 5G EPN Network Easily? You can use a 5G enterprise private network, or EPN, to get the most important benefits for a small business. Speed to promote an industrial digital transformation IoT readiness Better control over digital assets. Improved security Reliable coverage Network slicing Ultra-low latency Improved bandwidth Improved quality of service (QoS) You will have complete control over configuring and customizing your EPN, managed independently by your in-house 5G networks. Explore the future avenues of 5G private networks in detail. The Future of 5G Private Networks and Wi-Fi with Industrial Use Cases: According to a study by RAN Research, by 2028, private 5G networks will generate about $23.5 billion, with 19% usage in the manufacturing industry and 12% of the network in the healthcare industry. The deployment of the 5G network and upgraded Wi-Fi standards will likely be saturated by 2024. Most of the investments would be towards upgrading the infrastructure and maintaining the network. The goal of fierce competition among telecom network operators will be to gain rapid market share, bringing down the cost of usage. The new service providers will garner competition from telecom giants, while 5G private networks from different enterprises will still be dominant and mainstream in providing security, privacy, and data isolation. Leading Industrial Use Cases Healthcare: A revolution in healthcare benefiting from 5G technology is bound to happen with their transition to a cloud-native architecture. The need for high-speed and reliable connectivity will arise sooner or later, and 5G private networks will perfectly meet the requirement. The driving forces for healthcare to adopt 5G private networks include the shift to demographics, value-based and patient-centric care, and emergency healthcare. In addition, the use of big data analytics, the internet of medical things (IoMT), better wearable medical technology, hospital remote monitoring systems, e-Health and more will need the speed that 5G offers. Manufacturing: The Industrial Internet of Things (IIoT) uses private 5G networks. Depending upon the software-defined implementation of the 5G network, 5G does not just allow remote monitoring of production lines; it also regulates maintenance and device lifecycle while powering industrial automation. 5G is also finding its way into implementing augmented reality for troubleshooting electronics, additive manufacturing and 3D printing, automated guided vehicles, camera-based video analytics and more. Collaborative robotics, supply chain optimization, and maintenance using a digital twin are a few other things that are worth mentioning. Supply Chain: Due to near-shoring, manufacturing and distribution will decentralize. Due to Internet of Things (IoT) devices with sensors, supply chain and shipping logistics companies will be able to reduce delivery times, have better control over warehouse and transportation environments, and offer great asset management services. Final Thoughts Finding the right 5G private network type for your enterprise is easy. It offers enhanced security while connecting to the cloud, IoT and more. This would allow the development of futuristic products and services, touching multiple industries, with healthcare, manufacturing, warehousing, and logistics among the top. Keeping trade secrets and the latest research and development secure and enhancing the capabilities by integrating future technologies will improve with a 5G EPN. With a 5G private network for your enterprise being used on a large scale, the future of networking looks bright. FAQs: What is the difference between a public 5G network and a private 5G network? A single location or several locations of the same institution, business, or organization are the focus of a private 5G network. On the contrary, the public 5G network is nationwide with millions of subscribers without being dedicated to serving a single entity. Because of this, 5G EPN infrastructure solutions will probably be used on college campuses, in factories, hospitals, military bases, transportation hubs, and other places. What is a private 5G network and what are the benefits of a private 5G network? A 5G private network offers low latency, high bandwidth and multiple connections with access control, which are perfect for business applications for small, medium and large enterprises. Furthermore, 5G private networks allow you to tailor them to your business requirements, making them an excellent investment for your business. Again, while diversifying your business as per customer and market demand, it is crucial to have a networking infrastructure that can adapt to your changing needs. Therefore, a private 5G network becomes even more critical. How does EPN help in centralization and business continuity? When implementing business continuity planning and centralization of your organization, a 5G EPN can provide several benefits over a public network. It makes integrations easy, provides high-quality services, improves access control and reliability, and lets your business share resources in the best way for its current and future needs.

Read More
Unified Communications, Network Security

Five ways to win at antenna integration

Article | July 10, 2023

Antennas are fundamental to the performance of connected devices, but are often implemented as an afterthought, resulting not only in sub-optimal performance, but also in less-than-ideal form factor. It can also have a negative impact on cost for the device as a whole. It is therefore essential that organisations prioritise antenna design as part of a holistic device design philosophy – bear in mind that it is practically impossible to fix bad antenna design. Early decisions need to be made regarding the relative merits of embedded or external devices and then attention can turn to optimising antenna integration.

Read More

Edge Computing and the Future of the Data Center

Article | September 16, 2021

If you are clued into IT, then most likely, you are aware of the latest trending technology, edge computing data centers. Edge Computing ensures exceptional speed, with firm privacy and security compared to the conventional cloud methods, thus making edge data centers an imperative option for everyone. The world is undoubtedly moving faster, thereby perpetually pushing the power of next-generation innovation. Edge computing data center has emerged as a substitute to cloud computing, that keeps the data processing power at the “edge” of the network. But, it also comes with a set of challenges to the network. Edge computing devices that have processing functions are expensive and to operate the older version, additional equipment is required, which incurs extra expenditure. Despite the challenges, edge computing has turned out to be the biggest technology investment. So, let’s break it down here with comprehensive details to understand how this latest trending technology is all set to shape the future of the data center. A Brief on Edge Computing The word edge refers to the literal geographic distribution that brings computation and data storage nearer to the data sources. It improves the response duration and saves bandwidth as it runs fewer processes in the cloud and shifts those processes to local destinations such as on a user’s computer, an edge server, or an IoT for that matter. In a nutshell, edge computing is a topology that enables data to be analyzed, processed, and transferred at the edge of a network, It helps diminish the long-distance communication that takes place between a client and server. A significant advantage of using edge computing lies in its high speed and better reliability. In addition, it offers improved security by distributing processing, storage, and applications across wide-ranging devices and data centers. What’s more, it paves the way for a budget-friendly route to scalability as well as versatility, enabling organizations to expand their computing capabilities through an amalgamation of IoT devices and edge computing data centers. Edge Data Centers and Their Usage! There isn’t any specific explanation that would describe the idea of an edge data center, considering it isn’t one consistent style of the facility. It instead consists of smaller facilities that serve both edge computing and larger-scale cloud services. Since they are located closer to the population, they could easily extend the edge of the network to deliver cloud computing resources and cached content to end-users. Typically, they connect to a larger central data center or multiple computer data centers seamlessly. Latency has forever been a matter of concern for cloud data center managers. In recent times, it has emerged as a key obstacle due to big data, the Internet of Things, cloud and streaming services, and other technology trends. Moreover, in today’s time and age, end-users and devices demand access to applications and services anytime and anywhere, which leaves no room for latency. Consequently, companies across the spectrum are establishing edge data centers to ensure cost-effective and high-functionality ways to provide customers with content and performance. A great way to learn more about the data center would be to understand its usage. The following are some of the services that primarily rely on edge computing: Internet of Things Internet of Things tools essentially require low latency and reliable connections to the data center to function with high intensity. IoT devices add up a vast number of edge computing utilities; thus using edge computing makes it simple and effective. Streaming Content Streaming content is one of the most consumed form of infotainment. Users today want their video to get started with a single click that edge facilities help achieve. Drones While Drones are increasingly getting popular, their features are also massively advancing. For example, with edge computing, drones could be controlled even from far-flung locations without any hitch. Artificial Intelligence AI is one of the most thriving technologies that have taken over the world with its magnificent scalability, To make AI advantageous to the system, it should be able to access data, process it, and communicate with the end-users effectively and quickly which an edge data center allows. Virtual Reality Virtual Reality needs to get updates as quickly as possible to create an immersive world for the users. Though primarily associated with gaming, VR has also gained recognition for different paradigms such as communication, education, and several other significant uses. Edge Computing and Data Centers – The Future! A dedicated 5G Provider Edge Computing is underway, building mammoth telecommunications capabilities into data center growth trends. These facilities could change the dynamics of 5G providers for enterprise brands and emerge as the dedicated 5G providers for organizations. Support sustainable business goals Edge data centers are being looked to as a periphery that can help build more efficient solutions to enable the sector’s sustainability. Edge computing is specifically designed to keep applications and data closer to devices and their users. Therefore, there is little doubt over the impact that edge computing will have on sustainable business goals. Making way for Robot Security Guards Evolution in AI and IoT has drastically changed the human staffing needs inside the data centers and made way for Robots. Currently, Robots have been deployed in some of the hyper-scale data centers for specific tasks. Whether it is the automated inspection, faulty disc locating, or disc charging, with Robots at the helm of affairs, everything can be completed seamlessly. Many data center and robotics professionals are predicting that the next couple of years will be big leaps when it comes to placing more robotics in the data center environment. Bill Kleyman - now Switch EVP of digital solutions - wrote in 2013. How Does One Choose a Location For a Data Center? Data centers are a critical part of any business enterprise operations. Hence, decisions regarding its locations cannot be relegated to an arbitrary choice. In the past, companies used to set up their edge data centers closer to their offices to maintain the proximity. However, that is swiftly changing now as the equipment administration and monitoring can be achieved remotely. With the data center industry transforming, performance is no longer the sole consideration. To create a defining success of the data centers, companies are now looking for different sites for their data centers, primarily focusing on factors like economic, political, social, and geographical. The current scenario highlights the significance of considering Energy efficiency, business continuity plan, and resource optimization. With so much at stake, the edge data centers should be effortlessly accessible. Conclusion Edge computing and data center growth has garnered a lot of interest among the users over the past few years. It will continue to thrive for many more years to come as it meets the eye of the global tech demands and the current and future needs of the users worldwide. Frequently Asked Questions What are the benefits of edge computing? One of the top benefits of edge computing is its quick response time and low latency period across all devices. It also simplifies the bandwidth and creates less risk in corporate security. What are the drawbacks of edge computing? A significant drawback of edge computing is the need of a huge storage capacity. The security challenge is also relatively high due to the massive amount of data stored in it. Moreover, the expensive cost factor is also a disadvantage of it. { "@context": "https://schema.org", "@type": "FAQPage", "mainEntity": [{ "@type": "Question", "name": "What are the benefits of edge computing?", "acceptedAnswer": { "@type": "Answer", "text": "One of the top benefits of edge computing is its quick response time and low latency period across all devices. It also simplifies the bandwidth and creates less risk in corporate." } },{ "@type": "Question", "name": "What are the drawbacks of edge computing?", "acceptedAnswer": { "@type": "Answer", "text": "A significant drawback of edge computing is the need of a huge storage capacity. The security challenge is also relatively high due to the massive amount of data stored in it. Moreover, the expensive cost factor is also a disadvantage of it." } }] }

Read More

Spotlight

Adaptiva

Adaptiva is a leading, global provider of IT systems management solutions that advance the power of Microsoft System Center Configuration Manager (SCCM). Founded in 2004 by the lead architect of Microsoft SMS 2003, Adaptiva enables IT professionals to securely speed enterprise-wide software deployments without adding costly servers or throttling network bandwidth.

Related News

Network Infrastructure

Algeria Telecom Deploys NEC & Juniper Networks' 5G-Ready IP MTA

Algeria Telecom | May 31, 2022

NEC Corporation, a world's leading IT and network transformation service company, and Juniper Networks, a leader in secure, AI-driven networks, have worked with Algeria Telecom, the leader in the Algerian telecommunications market, to roll out its modernized, nationwide IP metro commercial network to support current demand for increased capacity and future 5G and FTTx requires. Algeria Telecom has a mid-term strategy objective to develop a homogenized, optimized transport network with automated capabilities to ensure bandwidth and future-proof its infrastructure in a rising market. NEC and Juniper implemented Algeria Telecom's next-generation IP metro network while maintaining quality of service and the greatest user experience. Algeria Telecom chose Juniper Networks' high-performing, security solutions for SDN-ready, cloud-grade networking and feature-rich, simple and secure connectivity at scale as the innovative foundation of its new platform. The access nodes create separate pre-aggregation, aggregation, and access domains for optimal reliability. Algeria Telecom implemented the Juniper Paragon Automation cloud-native solution package, Paragon Pathfinder and Paragon Planner, to get deep network insight and simplify operations. This ensures 5G and multicloud user experiences. All Juniper systems operate on Junos OS to deliver an easily managed, open solution. Mr. Adel Bentoumi, CEO of Algeria Telecom said that "The successful completion of the IP metro network modernization project by our partners, NEC Corporation and Juniper Networks, will allow us to make the migration to IPV6 and the initiation of digital transformation, as well as the implementation of high speed internet, as we best satisfy the needs of Algeria Telecom customers." The rapid growth of network traffic is a clear indication of the need for modernization and expansion of network capacity. NEC and Juniper have been extremely attentive to our needs, both technical and commercial, working as an extension of our team with their outstanding local engineering abilities, as well as their relentless efforts to assure quality of experience and on-time delivery. Overall, the innovative solutions from Juniper to enable this automated metro cloud architecture have helped us achieve our strategic goals and thrive as we pave the way for 5G.” AllahoumHocine, Head of IP Core, Algeria Telecom Brendan Gibbs, Senior Vice President, Automated WAN Solutions, Juniper Networks said that “Networks have always been a key asset for service providers, but going forward they will be the foundation for every aspect of business transformation in the 5G and cloud era. Algeria Telecom is jumping ahead of the curve by investing in an open, agile and automated network architecture that can drive simplified operations, improved economics and superior end-user experiences.”

Read More

Wireless

TDK Ventures Invests in XCOM Labs

TDK | May 30, 2022

TDK Corporation today announced that its subsidiary TDK Ventures, Inc. has decided to invest in wireless communications disruptor XCOM Labs to accelerate the development of their 5G and wireless communications solutions, which prioritize bandwidth capacity, latency reduction/elimination, and compute load balancing. XCOM is developing wireless technologies to allow smart manufacturing, automation, off-site training, and more immersive telework experiences in the future of work and Industry 4.0. This extends beyond medical, entertainment, and even defense applications to aid in the training and preparation of military troops. Many of the breakthrough technologies seen in the 2G/3G/4G revolutions were developed by XCOM's leadership team, which included Dr. Paul Jacobs, Derek Aberle, and Matt Grob. As present infrastructure cannot keep up with the need for 5G and wireless infrastructure, there is a large demand for further growth and adoption of supporting technologies. Each "G" generation signifies an effort to increase wireless transmission speed, capacity, and overall value. This necessitates not only hardware and software improvements, but also the use of either frequency spectra in new and novel waves or very new frequency bands. The balance of energy, frequency, and transmission is one of several compromises. Higher frequency – and consequently energy signals – can transport more information in less time but degrade faster over distance. In terms of infrastructure, this implies that more transmitting "nodes" in the network are required to convey higher frequency signals over a given region. XCOM is developing technologies that will level the playing field. Their solutions aim to increase spectrum capacity and utility by more than tenfold, allowing the potential promised by 5G and next-generation developers to become a reality. XCOM, for example, is developing further to take digital transformation to the next level via extended reality (XR). They are building a high throughput, low latency wireless technology to enable seamless virtual reality (VR) and augmented reality (AR) experiences utilizing a globally accessible 60GHz millimeter wave spectrum. What was previously constrained by the necessity for heavy processing equipment nearby or the poor throughput of smartphone processing is now becoming a full system capable of immersing the user in a metaverse or digital world environment. This will be a significant advancement in the integration of edge computing processing to deliver a more natural user experience. The XCOM team is set on continuing our tradition of excellence and innovating in the wireless space. We understand how important high throughput/low latency is for the future of compute-heavy applications and are working to deliver those capabilities to create real and positive change in our world and industry applications. Our XR technologies are evidence of this progress and show that seamless processing through edge computing can deliver a truly immersive and agile VR/AR system fit for business, entertainment, and more." XCOM's Dr. Jacobs TDK Ventures shares XCOM's dedication to digital transformation for a better, more sustainable future. TDK Ventures will assist XCOM with scaling the effect of their technology by using their network connections, industry partners, and linking XCOM to other TDK business divisions. The platform team at TDK Ventures also offers early product validation, pilots, customer/channel/ecosystem access, market knowledge, operational experience (e.g., materials, manufacturing, fabless, supply chain), and go-to-market/branding coaching.

Read More

Wireless

Vislink Showcases Innovative 5G & Cloud-Based Wireless Solutions

Vislink | May 27, 2022

Vislink, a worldwide leader in the capture, distribution, and management of high quality, live video and data in the media & entertainment, law enforcement, and military industries, presented private network 5G technology during a sports event in the UK to illustrate its potential in broadcast. Vislink and Mobile Viewpoint's adoption heralds a revolution in remote production processes by extending bi-directional IP connections to the edge and allowing virtualized production in the cloud. Vislink's breakthroughs were on display at the Gallagher Premiership Rugby match between Saracens and the Northampton Saints at StoneX Stadium in London, where it backed a BT-led project to highlight the potential for 5G in broadcast contributions by connecting matchday cameras to a standalone private 5G network. In a UK first, this cameras' feed was included in BT Sport's live broadcasts of the match, a first for a customer broadcast. BT Media & Broadcast, BT Sport, Broadcast RF, and Neutral Wireless headed the project. Vislink installed private network 5G transmitters with COFDM technology to illustrate how 5G technology is growing to offer assured quality, low latency video from wireless cameras to give spectators realistic up-close camera views of the athletic event. Mobile Viewpoint's 5G-enabled encoders send camera feeds to the cloud across a secure, low-latency 5G private network and IP LAN. The director can pick camera feeds for the program stream fully in the cloud, utilizing BT Sport's virtualized production process. This cloud-based installation illustrates Mobile Viewpoint's capacity to bring new cost and operating advantages for distant manufacturing operations. Vislink's long-standing expertise in COFDM-based wireless technologies was bolstered last year with the inclusion of Mobile Viewpoint 5G technology capabilities. Vislink now has a best-of-breed portfolio of resilient and efficient solutions for a broad range of deployment situations thanks to the integration of these technologies. Following on from the world's first stand-alone private 5G network for sports broadcasting during the British MotoGP 2021 Grand Prix, this current public demonstration signals another step forward in the company's 5G wireless technology leadership. Vislink and Mobile Viewpoint showed the world's first glass-to-glass All-IP wireless and virtualized manufacturing during this experiment, which was arranged by BT Sport and BT Media & Broadcast. This momentous trial has now established the future course for live event streaming.

Read More

Network Infrastructure

Algeria Telecom Deploys NEC & Juniper Networks' 5G-Ready IP MTA

Algeria Telecom | May 31, 2022

NEC Corporation, a world's leading IT and network transformation service company, and Juniper Networks, a leader in secure, AI-driven networks, have worked with Algeria Telecom, the leader in the Algerian telecommunications market, to roll out its modernized, nationwide IP metro commercial network to support current demand for increased capacity and future 5G and FTTx requires. Algeria Telecom has a mid-term strategy objective to develop a homogenized, optimized transport network with automated capabilities to ensure bandwidth and future-proof its infrastructure in a rising market. NEC and Juniper implemented Algeria Telecom's next-generation IP metro network while maintaining quality of service and the greatest user experience. Algeria Telecom chose Juniper Networks' high-performing, security solutions for SDN-ready, cloud-grade networking and feature-rich, simple and secure connectivity at scale as the innovative foundation of its new platform. The access nodes create separate pre-aggregation, aggregation, and access domains for optimal reliability. Algeria Telecom implemented the Juniper Paragon Automation cloud-native solution package, Paragon Pathfinder and Paragon Planner, to get deep network insight and simplify operations. This ensures 5G and multicloud user experiences. All Juniper systems operate on Junos OS to deliver an easily managed, open solution. Mr. Adel Bentoumi, CEO of Algeria Telecom said that "The successful completion of the IP metro network modernization project by our partners, NEC Corporation and Juniper Networks, will allow us to make the migration to IPV6 and the initiation of digital transformation, as well as the implementation of high speed internet, as we best satisfy the needs of Algeria Telecom customers." The rapid growth of network traffic is a clear indication of the need for modernization and expansion of network capacity. NEC and Juniper have been extremely attentive to our needs, both technical and commercial, working as an extension of our team with their outstanding local engineering abilities, as well as their relentless efforts to assure quality of experience and on-time delivery. Overall, the innovative solutions from Juniper to enable this automated metro cloud architecture have helped us achieve our strategic goals and thrive as we pave the way for 5G.” AllahoumHocine, Head of IP Core, Algeria Telecom Brendan Gibbs, Senior Vice President, Automated WAN Solutions, Juniper Networks said that “Networks have always been a key asset for service providers, but going forward they will be the foundation for every aspect of business transformation in the 5G and cloud era. Algeria Telecom is jumping ahead of the curve by investing in an open, agile and automated network architecture that can drive simplified operations, improved economics and superior end-user experiences.”

Read More

Wireless

TDK Ventures Invests in XCOM Labs

TDK | May 30, 2022

TDK Corporation today announced that its subsidiary TDK Ventures, Inc. has decided to invest in wireless communications disruptor XCOM Labs to accelerate the development of their 5G and wireless communications solutions, which prioritize bandwidth capacity, latency reduction/elimination, and compute load balancing. XCOM is developing wireless technologies to allow smart manufacturing, automation, off-site training, and more immersive telework experiences in the future of work and Industry 4.0. This extends beyond medical, entertainment, and even defense applications to aid in the training and preparation of military troops. Many of the breakthrough technologies seen in the 2G/3G/4G revolutions were developed by XCOM's leadership team, which included Dr. Paul Jacobs, Derek Aberle, and Matt Grob. As present infrastructure cannot keep up with the need for 5G and wireless infrastructure, there is a large demand for further growth and adoption of supporting technologies. Each "G" generation signifies an effort to increase wireless transmission speed, capacity, and overall value. This necessitates not only hardware and software improvements, but also the use of either frequency spectra in new and novel waves or very new frequency bands. The balance of energy, frequency, and transmission is one of several compromises. Higher frequency – and consequently energy signals – can transport more information in less time but degrade faster over distance. In terms of infrastructure, this implies that more transmitting "nodes" in the network are required to convey higher frequency signals over a given region. XCOM is developing technologies that will level the playing field. Their solutions aim to increase spectrum capacity and utility by more than tenfold, allowing the potential promised by 5G and next-generation developers to become a reality. XCOM, for example, is developing further to take digital transformation to the next level via extended reality (XR). They are building a high throughput, low latency wireless technology to enable seamless virtual reality (VR) and augmented reality (AR) experiences utilizing a globally accessible 60GHz millimeter wave spectrum. What was previously constrained by the necessity for heavy processing equipment nearby or the poor throughput of smartphone processing is now becoming a full system capable of immersing the user in a metaverse or digital world environment. This will be a significant advancement in the integration of edge computing processing to deliver a more natural user experience. The XCOM team is set on continuing our tradition of excellence and innovating in the wireless space. We understand how important high throughput/low latency is for the future of compute-heavy applications and are working to deliver those capabilities to create real and positive change in our world and industry applications. Our XR technologies are evidence of this progress and show that seamless processing through edge computing can deliver a truly immersive and agile VR/AR system fit for business, entertainment, and more." XCOM's Dr. Jacobs TDK Ventures shares XCOM's dedication to digital transformation for a better, more sustainable future. TDK Ventures will assist XCOM with scaling the effect of their technology by using their network connections, industry partners, and linking XCOM to other TDK business divisions. The platform team at TDK Ventures also offers early product validation, pilots, customer/channel/ecosystem access, market knowledge, operational experience (e.g., materials, manufacturing, fabless, supply chain), and go-to-market/branding coaching.

Read More

Wireless

Vislink Showcases Innovative 5G & Cloud-Based Wireless Solutions

Vislink | May 27, 2022

Vislink, a worldwide leader in the capture, distribution, and management of high quality, live video and data in the media & entertainment, law enforcement, and military industries, presented private network 5G technology during a sports event in the UK to illustrate its potential in broadcast. Vislink and Mobile Viewpoint's adoption heralds a revolution in remote production processes by extending bi-directional IP connections to the edge and allowing virtualized production in the cloud. Vislink's breakthroughs were on display at the Gallagher Premiership Rugby match between Saracens and the Northampton Saints at StoneX Stadium in London, where it backed a BT-led project to highlight the potential for 5G in broadcast contributions by connecting matchday cameras to a standalone private 5G network. In a UK first, this cameras' feed was included in BT Sport's live broadcasts of the match, a first for a customer broadcast. BT Media & Broadcast, BT Sport, Broadcast RF, and Neutral Wireless headed the project. Vislink installed private network 5G transmitters with COFDM technology to illustrate how 5G technology is growing to offer assured quality, low latency video from wireless cameras to give spectators realistic up-close camera views of the athletic event. Mobile Viewpoint's 5G-enabled encoders send camera feeds to the cloud across a secure, low-latency 5G private network and IP LAN. The director can pick camera feeds for the program stream fully in the cloud, utilizing BT Sport's virtualized production process. This cloud-based installation illustrates Mobile Viewpoint's capacity to bring new cost and operating advantages for distant manufacturing operations. Vislink's long-standing expertise in COFDM-based wireless technologies was bolstered last year with the inclusion of Mobile Viewpoint 5G technology capabilities. Vislink now has a best-of-breed portfolio of resilient and efficient solutions for a broad range of deployment situations thanks to the integration of these technologies. Following on from the world's first stand-alone private 5G network for sports broadcasting during the British MotoGP 2021 Grand Prix, this current public demonstration signals another step forward in the company's 5G wireless technology leadership. Vislink and Mobile Viewpoint showed the world's first glass-to-glass All-IP wireless and virtualized manufacturing during this experiment, which was arranged by BT Sport and BT Media & Broadcast. This momentous trial has now established the future course for live event streaming.

Read More

Events