Undersea Cables: Here’s What They Look Like & Why They Matter to Your SD-WAN

STEVE GARSON | February 11, 2019 | 32 views

Anyone with a global network depends directly or indirectly on undersea cable connectivity. These undersea cable systems traverse the Atlantic, Pacific,  and Indian Oceans making global connectivity possible.  But what do these cables look like?  In case you ever wondered: This is a typical undersea cable.  The fiber optics are in the three bundles toward the center.  That double layer around the circumference is steel cables to provide strength and some flexibility.  It requires enormous strength for an undersea cable to survive, as you can imagine

Spotlight

Cox Communications

Cox Business is a technology solutions leader offering networking and security services to businesses of all sizes and Cox Media is a full-service provider of national and local cable spot and digital media advertising. More information about Cox Communications, a wholly owned subsidiary of Cox Enterprises, is available at www.cox.com and www.coxmedia.com.

OTHER ARTICLES
WAN TECHNOLOGIES

Edge use cases need a 5G and beyond user plane

Article | June 7, 2022

Emerging virtual and hybrid private 5G solutions are enabling communication service providers (CSPs) to address a large number of new consumer and enterprise edge use cases. Each of these edge use cases will require a specific network deployment model and edge user plane connectivity. That’s why we’ve designed our 5G edge user plane to tackle five distinct key capabilities: support of flexible network deployments, 3GPP dual-mode support, integrated Gi LAN services, integrated probing with edge analytics and edge exposure enablement. Let’s dive into this blog post to learn how the powerful 5G edge user plane is unlocking new 5G edge use cases. How technological innovation creates value and benefits society has always interested me, influencing my work as a mobile network technologist and sales professional. Since mobile data was introduced in late 90s, both mobile network technology and mobile consumer use cases have evolved enormously. Indeed, a rapid increase in connectivity speed and the introduction of smartphones have pushed the market to adopt mobile web and video and create thousands of new applications. However, sometimes ‘killer use cases’ require both business case and application ecosystem maturity. One example is video conferencing, one of the key services 3G was designed for but was only introduced when the over-the-top (OTT) vendors disrupted the content provider market and popularized social media. Creation of mobile technology has indeed its own innovation cycles and research feeds and therefore can't depend on market pull, but you can draw the conclusion that the time to value greatly benefits when the broad business and technology ecosystem in the value chain collaborate and co-create solutions. Precisely, what’s really exciting about 5G is that it coincides with the maturity of other two disruptive technology enablers for end applications: artificial intelligence (AI) and cloud edge computing. It also comes at a moment when there’s both an urgent need and huge financial support to digitalize society and industry. In fact, more than ever, we are witnessing a close collaboration between technology and business ecosystems. Over the past few years, there have been a large number of public-private consortiums to feed service requirements into 5G standards, explore and validate the value of 5G technology. For example, just to name few, the 5G alliance for connected Industries and automation (5G-ACIA) or European 5G infrastructure Public Private Partnership (PPP) projects. For years, 3GPP standards have been preparing to define advanced 5G connectivity solutions for edge computing and vertical digitalization use cases. In addition, all sorts of consumer and enterprise edge applications are being developed at the same pace in many areas such advanced video processing, AI analytics, immersive gaming, smart grid applications, automated guided vehicles (AGVs) controls or industry automation. The edge ecosystem is particularly complex and involves different players. One key pillar is the wireless connectivity service CSPs offer. 5G-ACIA introduced the concept of virtual private and hybrid private 5G solutions, two emerging solutions that CSPs are exploring to complement their private 5G network offerings. Such solutions allow CSPs to leverage their existing public networks and offer new services in an agile and cost-effective manner using new 5G capabilities such as network slicing. In order to address edge use cases, virtual and hybrid private 5G solutions need to bring the user plane connectivity to the edge by deploying 5G edge user plane functions. The 5G edge user plane supports flexible network deployments One key learning from industry experimentation with 5G is that each use case brings a unique combination of connectivity requirements, in terms of end-to-end performance (uplink and downlink latency, jitter, packet loss and throughput), data privacy and security, robustness, wide vs local area coverage and mobility. Latency and security requirements drive the selection of the edge location, which can be the enterprise premise, CSP access or regional data center or even the extended public edge such as content delivery networks (CDN) content provider or a hyper cloud provider’s (HCP) edge data center. For example, a mobile gaming application can be located in the CSP regional data center or HCP edge, whereas video processing and AI for a factory automation application is located on the factory premise. Also edge distribution can be accounted by CSP for those use cases which produce significant amount of data such as fixed wireless access (FWA) to optimize backhaul costs. Ericsson has a vast experience supporting and driving the ecosystem to realize time critical communication use cases at scale and has conducted detailed latency analysis for different type of deployments. The RAN deployment needs to be carefully planned according to the specific use case performance characteristics. Some use cases can be achieved with existing macro RAN environment -4G or non-standalone 5G-, with macro RAN standalone 5G with or without dedicated quality of service (QoS) profiles or even may require network slicing to partition macro RAN. In contrast, some other use cases will need dedicated RAN deployments. In addition, most use cases will benefit from a dedicated edge user plane function, as it provides a higher level of performance and robustness. In summary, the concrete edge use cases to be offered and CSP’s own solution preferences drive the type of network solution and deployment, which can be a private 5G network, a virtual or a hybrid 5G private network using existing macro or dedicated RAN, with or without network slicing. The edge 5G user plane function should allow for such deployment flexibility and enable the different edge use cases characteristics. Ericsson Local Packet Gateway (LPG) addresses this by: Supporting any access technology, radio deployment model and RAN vendor Seamlessly integrating with Ericsson’s existing dual-mode 5G Core. which is prepared for slicing, efficient routing to edge (also called edge breakout) and advanced QOS and many other 5G edge features described in more detail in next section. Supporting a fast time to service, deployment simplicity and a very low footprint enabling deployment at scale in any type of edge location, up to on enterprise premises. See our previous LPG 5G edge user plane: key requirements for success for details. Providing a high level of robustness and failure resilience by means of a cloud native user plane application designed for high availability and fault resilience, support of geo-redundancy and support of 3GPP control plane and user plane split (CUPS) interface which can be deployed in full mesh with multiple control planes. User plane can also be deployed as a dedicated function within a slice to secure further characteristics and isolation or as a shared function for various slices. 5G edge user plane should enable transition from 4G to more sophisticated 5G connectivity Most of CSPs are embracing edge opportunities. They are viewing the opportunities as an evolution of their existing offerings rather than a revolution, meaning existing 4G enterprise use cases will still need to be supported for some time as the ecosystem matures to support time-critical communications type of use cases. This means 5G edge user plane should be dual-mode and support such a wide breadth of technology. 5G edge user plane should support both 3GPP compliant serving/packet gateway user function (S/PGW-U) and user plane function (UPF) and evolve with advanced UPF features for time-critical communications, such as more stringent end to end QoS and transmission robustness for ultra-reliable low latency communications (URLLC) or Ethernet connectivity for advanced edge industrial use cases. It should also support 5G peak rates and do not degrade use cases performance characteristics. It should also support dynamic edge routing solutions which are efficient, deployable by multipurpose terminals and mobility proof such as dynamic network slice selection which is preferrable to UPF as uplink classifier as starting solution until standardization evolves. 5G edge user plane should work in conjunction with the CSP’s dual-mode core system, which supports dynamic slicing orchestration, dynamic slice selection, ultra-reliable low latency communications and advanced 5G edge connectivity features such as different service continuity and user plane re-anchoring modes depending on mobility and application resilience needs. Ericsson’s dual-mode 5G Core with Local Packet Gateway provides such advanced 5G connectivity in a pre-verified manner. In fact, the Ericsson Local Packet Gateway Cloud Native Function (CNF) is based on the same software as the Ericsson Packet Core Gateway (PCG), the market leading cloud-native user plane, which is deployed in 5G live networks today. Such deployment flexibility in edge user plane allows CSP to offer distinct use cases. For example, CSPs can offer mobile gaming service by deploying a cloud virtual reality (VR) gaming center application in their regional data centers. Connectivity with guaranteed low latency QoS can be provided by a dedicated 5G network slice with the dedicated Ericsson Local Packet Gateway, deployed close to the gaming application and connected to the CSP’s existing central core network. The mobile gaming application can use a portable device such as VR glasses or use a multi-purpose smartphone or tablet that supports dynamic slice selection. CSP can reuse their existing public network and macro 5G RAN. As another example, CSP can offer 5G edge connectivity to factories or logistic centers for augmented reality (AR) quality inspection. The AR application is deployed on the factory premise and needs an ultra-reliable and low-latency QoS connection to process in real time all the factory images. This is provided by a dedicated Ericsson Local Packet Gateway with ultra-reliable low latency QoS and redundant configuration being deployed on premises. Edge use cases will require user plane services beyond 3GPP There is a set of non-standardized user plane functions deployed in today’s networks (also called GI/N6 LAN functions) for mobile broadband service that would be also relevant for edge use cases. These functions can be categorized as: Traffic acceleration and optimization of access resources e.g., transport layer optimizers or advanced video traffic shapers Network services e.g., carrier grade NAT devices or external load balancers Service aware traffic monitoring and enforcements needed to realize customized CSP charging data plans or comply with some country regulatory such as content filters Network security functions protecting CSP infrastructure and UEs of security attacks such as subscriber firewalls or distributed denial (DDoS) mitigation systems, and Service chain policers and forwarders to chain and offload these GI/N6 LAN functions. Those can be integrated with operator policy framework to compose and program a unique data pipeline which addresses the specific connectivity needs of a given subscriber and application in the context of a certain use case The current GI/N6 LAN market is very fragmented and addressed by many different vendor specific user plane functions. These functions are deployed as separate appliances or virtualized functions, each with their management system, policy integration and cloud orchestration system which significantly increases CSP’s total cost of ownership (TCO) when deploying and managing them. As CSPs start their edge journey they will need to bring some of these GI/N6 functions to the edge. A very simple and cost-efficient strategy to consolidate these functions in one single edge user plane function. This approach is being adopted by Ericsson Local Packet Gateway: it integrates these functions, including advanced integrated Packet Core Firewall, together with the UPF/S/PGW-U functions. This dramatically reduces the TCO and provides a single hop to the end application, which reduces further the latency. Ericsson Local Packet Gateway also allows to compose and tune the set user plane functions applied to a given traffic in one configuration click, which allows to customize the connectivity for each edge use case. Another consideration is that these GI/N6 functions were designed for legacy mobile broadband. This means they will need to evolve to support 5G peak user throughput rates and new 5G segment requirements, e.g., traffic optimizations should focus on optimizing the throughput of uplink transmissions and reducing the overall jitter and latency. Service aware charging models will evolve as 5G gets monetized, security for edge enterprise connectivity will keep evolving as well. Technological innovation in this space is a must for any edge user plane vendor and should be holistic considering the entire ecosystem and end-to-end solution behavior. As one example, edge user plane can leverage 3GPP exposure interfaces for application detection, use collaborative solutions with content providers or RAN to optimize traffic delivery or even adapt traffic optimizations to new end to end rate adaptation mechanisms such as low latency low loss scalable throughput (L4S). Ericsson, as an end-to-end network provider and key contributor to 5G standardization, is working actively in this space. Edge connectivity needs to be monitored and assured CSPs need to monitor, troubleshoot, and assure the edge user plane connectivity. In many cases the CSP organizations dealing with enterprises services have their own analytic and management systems. Those systems need to evolve to provide visibility of the 5G encrypted communication, up to on enterprise premise and without compromising 5G security and provide advanced insights to meet the stringent service level agreements of edge use cases. Example of user plane data feeds are traffic packet and patterns statistics, key performance indicators at transport level or service quality of experience estimates per application, area of interest, slice and subscriber type. CSP analytic use cases will also evolve, meaning network assurance and service experience management use cases will increasingly adopt AI/ML models with distinct and very demanding UP data sets running in parallel. External probing solutions were not designed for these requirements. The cost of evolving and deploying such solutions to thousands of edges is unaffordable. Ericsson Local Packet Gateway addresses this challenge by supporting integrated dual-mode probing capabilities which includes rich, granular data with pre-processed data and advanced data collection profiles avoiding the need of deploying external taps, packet broker and probes at edge. Software probes are a unique Ericsson dual mode 5G Core feature – a feature that’s very popular with our customers for public network and enterprise solutions. CSP will also introduce network data analytics function (NWDAF) function to enable 5G analytics for further 5G automation, new exposure APIs for verticals and data efficiency. An NWDAF can collect edge user plane and public network data to provide real time analytics which can be consumed by the network functions or by the end edge application to improve further the edge connectivity. Example of those analytics are user mobility, network congestion, quality of service, service experience or abnormal user behavior. Ideally, the NWDAF should be distributed at the edge and deployed co-located to the edge user plane for data efficiency, security and lower actuation latency. Ericsson NWDAF supports such distributed and co-located deployment and analytics and can collect pre-standard data from the Local Packet Gateway data until 3GPP rel-18 specifies UPF event exposure. Edge exposure for advanced edge connectivity Exposure through APIs on the edge is becoming increasingly important for CSPs to enable new services, increase their relevance in the 5G ecosystem and become more attractive partners for hyperscale cloud providers, application ecosystems and other players. Edge applications will be able to consume network capabilities and data to provide advanced services and innovate. Data extracted from edge user plane function will be of high value. For example, to determine the exact UE sessions being anchored by a given edge user plane, the actual monitored QoS, etc. Such exposure capabilities in edge user plane allows application to adapt the content delivery or reconfigure dynamically the connectivity, e.g., change dynamically the negotiated QoS or influence edge routing. As mentioned previously, NWDAF user plane analytics can be also exposed for advanced edge use cases. Ericsson is already working with our customers to create new edge use cases using Ericsson Local Packet Gateway and Edge Exposure Server. Stay tuned! Summary: In this blog post we’ve explained the different considerations that need to be taken into account when selecting the 5G edge user plane, and how it enables flexible virtual private and hybrid 4G private solution deployments and address the user experience idiosyncrasy of myriads of edge use cases. The 5G edge user plane has to be small, cost efficient, easy to deploy but still extremely powerful and advanced in terms of dual connectivity and added value features. Ericsson Local Packet Gateway is designed with all these capabilities in mind and integrates seamlessly with existing CSP dual-mode 5G Core, delivering edge use cases was never that easy.

Read More
5G

Can SD-WAN Help Businesses in Boosting ROI?

Article | May 13, 2022

We are surrounded by acronyms and buzzwords in technology. SD-WAN is one that is often used in the industry nowadays. Organizations embrace digital transformation to stay up with market developments, consumer needs, and competitiveness. Traditional network designs weren't meant to manage digital transformation workloads and complexity. Business-critical services are commonly spread over numerous clouds, compromising network performance, particularly at branch sites. Smart network operations teams opt for SD-WAN. SD-WAN reduces overhead and improves network performance. Routing and hardware expenses are saved through SD-WAN solutions while allowing multi-cloud access. SD-WAN also reduces overhead and supports new digital apps and services. This new technology streamlines WAN administration and operation and brings corporate advantages. Business Challenges that SD-WAN Addresses There has been a dramatic increase in the pressure on the network as a result of digitalization. Businesses must now rely on a stable and secure network, which conventional router-based network topologies are incapable of providing. An SD-WAN solution assists businesses in addressing use cases in order to expedite digital transformation efforts, lower cybersecurity risks, and increase revenue. Eases connectivity with far-flung factories and offices. Effectively deploys new sites and minimizes network equipment sprawl. Enhances the speed of file transfer and backups to disaster recovery facilities. Helps in moving applications to the cloud and protecting cloud app. data using Secure Access Service Edge (SASE). Safeguards IoT devices using a zero-trust network Helps in complying with the cybersecurity framework of the National Institute of Standards and Technology (NIST). Ways SD-WAN Can Help Businesses Boost their Bottom Line Boosts Security Digital transformation is a double-edged sword. It can increase consumer satisfaction and market reach, but can pose security threats. According to the U.S. State of Cybercrime study, 41% of respondents stated more cybersecurity occurrences in 2017. The good news is that many SD-WAN solutions provide built-in security. Most SD-WAN systems only offer basic firewall and VPN functionalities, requiring IT teams to add security to elastic and dynamic SD-WAN connections after the fact. SD-WAN solutions with NGFW, IPS, encryption, AV, and sandboxing can avoid data loss, downtime, regulatory violations, and legal liability. Enables Cloud Usage Cloud services are rapidly being used by businesses. The great news is that SD-WAN enables direct cloud access at the remote branch, removing backhauling traffic – which routes all cloud and branch office traffic through the data center – allowing workers to directly access cloud applications irrespective of location without burdening the core network with additional traffic to manage and secure. Furthermore, SD-WAN enhances cloud application performance by prioritizing vital business apps and allowing branches to interact directly with the Internet. Reduces Costs As businesses deploy a growing number of cloud-based services, the volume of data traveling across a WAN rises dramatically, driving up operational expenses. SD-WAN, thankfully, can minimize this cost by utilizing low-cost local Internet connectivity, offering direct cloud access, and lowering traffic via the backbone WAN. According to an IDC poll (prediction), over a quarter of survey respondents anticipate SD-WAN cost reductions of up to 39%, with the other two-thirds anticipating more modest savings of 5–19%. Improves performance Data transfer over a network isn't created equal. Fortunately, SD-WAN can be set up to prioritize business-critical traffic and real-time services such as Voice over Internet Protocol (VoIP) and then successfully guide it over the most efficient path. IT teams can help decrease packet loss and latency concerns by supporting important applications over dependable, high-performance connections, increasing employee productivity and morale. This is business-impacting performance. Closing Note Indeed, SD-WAN evolved and flourished in the data center over the first few years of development. However, the time has arrived to take it seriously as a tool for managing your wide area network. There are currently several vendors on the market, as well as several mature solutions to choose from. More significantly, the business cases for SD-WAN are expanding on a daily basis.

Read More
NETWORK MANAGEMENT

Cisco SD-WAN – the easiest way to connect private links to the cloud from your data center or even branches

Article | July 11, 2022

Applications and workloads have been moving to the cloud for some time. This transition has been putting a lot of pressure on IT organizations to support the trend by extending their networks to support cloud connectivity. Cisco SD-WAN enables your hybrid connectivity to the cloud We at Cisco have innovated on multiple fronts to help our customers with this transition by providing a deep level of integration with many of the leading cloud service providers (CSPs), including Amazon Web Services (AWS), Microsoft Azure, and Google Cloud. Here, we highlight one key aspect of this innovation that allows private cloud links to be available as part of the SD-WAN network, enabling hybrid connectivity to the cloud and multicloud. Now our customers can benefit from all the rich features that our Cisco SD-WAN solution offers including application-aware routing, intent-based path selection, and security policy enforcement. Private direct cloud connectivity to CSPs such as AWS Direct Cloud Connect, Google Cloud Interconnect, and Azure ExpressRoute are becoming popular lately, as they provide customers with optimal connectivity similar to what MPLS did in the past, but in a more agile and on-demand fashion. The only problem is those services are normally acquired separately and customers must determine how to manage them as part of a larger WAN solution including configuration, monitoring, and so on. The on-demand nature of these circuits provides customers with major savings, but also turns automation into a key requirement for management. Enter Cisco SD-WAN release 20.6 Beginning with Cisco SD-WAN release 20.6, a Cisco SD-WAN customer may use Cloud OnRamp for Mutlicloud to automate and simplify cloud connectivity across private and public transports. What is great is this task, that used to require hours and days to setup, now only takes minutes as outlined by the following integration documents for AWS, Azure and Google Cloud respectively: Configure AWS Direct Connect as a Transport with SD-WAN in a Click Configure Azure Express Route as Transport with SD-WAN in a Click Configure Google Cloud Interconnect as a Transport with Cisco SD-WAN in a Click Once a customer implements such connectivity, they will have the ability to steer any type of traffic through it with a customizable and flexible SD-WAN policy. This solution also allows customers to eliminate some limitations imposed on them by the CSPs, such as restricting the number of prefixes advertised via BGP over private links, thus providing better scalability and control. For customers who already use Cisco SD-WAN Cloud Interconnect at middle-mile POPs, such as with Equinix or Megaport, rolling out this solution as a test can be extremely simple given the automation discussed above. The best way to find out how easy this solution is, is to try it.

Read More
5G

5G VS Wi-Fi 6: Companions or Competitors?

Article | May 25, 2022

Advancements inconnectivity have fueled the rapid progress in digitalization. From 1G in the 1980s to 4G in the last decade, wireless connectivity has constantly contributed to the transformation of businesses and the global economy. Today's 5G and Wi-Fi 6 technologies provide exciting features that are critical to increasing corporate productivity and improving people's digital experiences. When we refer to the 5G and Wi-Fi 6 revolutions, we're not talking about undisturbed movie streaming or faster downloads; we're talking about making sci-fi movie fiction a reality. Things you used to only see in movies, like robots doing chores, autonomous vehicles, smart cities, virtual reality gaming experiences, remote surgeries, telemedicine, automated assembly line production, augmented reality marketing strategies, and the way you shop, travel, work, and get medical consultations, will undergo a transformation beyond imagination, and 5G will make it happen. 5G VS Wi-Fi 6 5G and Wi-Fi 6 Carving the Future of Businesses Together When it comes to addressing particular needs, both 5G and Wi-Fi 6 are competitive depending on the industry vertical business environment, operation, devices, and applications. While Wi-Fi will be the dominant technology for indoor operations, as well as non-critical applications and the usage of unlicensed spectrum, 5G cellular networks will be used for outdoor coverage, mission-critical applications, highly guarded settings, and the anticipation of various QoS features. According to a survey conducted by Deloitte, the priorities of companies were 5G and Wi-Fi 6, the importance of which isonly anticipated to grow in the future years. Adoption of Wi-Fi 6 and 5G is regarded as a strategic requirement, leading businesses into a new era of wireless connectivity. With the convergence of Wi-Fi and 5G, organizations can do business everywhere while being highly productive and providing the greatest user experience. Businesses will attain the following primary goals by transitioning to this enhanced wireless 5G technology: increased effectiveness enhanced security Taking advantage of the benefits of these two forces, such as big data analytics, AI, and edge computing. The overall objective of leveraging this deadly mix is to unlock the possibilities of other emerging technologies such as IoT, cloud, Edge computing, big data analytics, VR, AR, robots, and others. Together, 5G and Wi-Fi 6 operate as a revolutionary multiplier. Closing Note 5G and Wi-Fi 6 are two separate technologies that can work in tandem. They share the following characteristics: low latency, faster data rates, increased capacity, and excellent performance. Even though 5G and Wi-Fi 6 complement each other's capabilities, the environment, sensitivity of the application, and business use cases will determine which is the best match. A holistic approach of Wi-Fi 6 and 5G is the optimum method for developing a smart city that is entirely networked or offering powerful Internet connectivity for families and businesses. Both technologies are critical in today's world, and every breakthrough in connection, whether it's 5G or Wi-Fi 6, contributes to our society's overall growth and innovation.

Read More

Spotlight

Cox Communications

Cox Business is a technology solutions leader offering networking and security services to businesses of all sizes and Cox Media is a full-service provider of national and local cable spot and digital media advertising. More information about Cox Communications, a wholly owned subsidiary of Cox Enterprises, is available at www.cox.com and www.coxmedia.com.

Related News

NETWORK INFRASTRUCTURE

Algeria Telecom Deploys NEC & Juniper Networks' 5G-Ready IP MTA

Algeria Telecom | May 31, 2022

NEC Corporation, a world's leading IT and network transformation service company, and Juniper Networks, a leader in secure, AI-driven networks, have worked with Algeria Telecom, the leader in the Algerian telecommunications market, to roll out its modernized, nationwide IP metro commercial network to support current demand for increased capacity and future 5G and FTTx requires. Algeria Telecom has a mid-term strategy objective to develop a homogenized, optimized transport network with automated capabilities to ensure bandwidth and future-proof its infrastructure in a rising market. NEC and Juniper implemented Algeria Telecom's next-generation IP metro network while maintaining quality of service and the greatest user experience. Algeria Telecom chose Juniper Networks' high-performing, security solutions for SDN-ready, cloud-grade networking and feature-rich, simple and secure connectivity at scale as the innovative foundation of its new platform. The access nodes create separate pre-aggregation, aggregation, and access domains for optimal reliability. Algeria Telecom implemented the Juniper Paragon Automation cloud-native solution package, Paragon Pathfinder and Paragon Planner, to get deep network insight and simplify operations. This ensures 5G and multicloud user experiences. All Juniper systems operate on Junos OS to deliver an easily managed, open solution. Mr. Adel Bentoumi, CEO of Algeria Telecom said that "The successful completion of the IP metro network modernization project by our partners, NEC Corporation and Juniper Networks, will allow us to make the migration to IPV6 and the initiation of digital transformation, as well as the implementation of high speed internet, as we best satisfy the needs of Algeria Telecom customers." The rapid growth of network traffic is a clear indication of the need for modernization and expansion of network capacity. NEC and Juniper have been extremely attentive to our needs, both technical and commercial, working as an extension of our team with their outstanding local engineering abilities, as well as their relentless efforts to assure quality of experience and on-time delivery. Overall, the innovative solutions from Juniper to enable this automated metro cloud architecture have helped us achieve our strategic goals and thrive as we pave the way for 5G.” AllahoumHocine, Head of IP Core, Algeria Telecom Brendan Gibbs, Senior Vice President, Automated WAN Solutions, Juniper Networks said that “Networks have always been a key asset for service providers, but going forward they will be the foundation for every aspect of business transformation in the 5G and cloud era. Algeria Telecom is jumping ahead of the curve by investing in an open, agile and automated network architecture that can drive simplified operations, improved economics and superior end-user experiences.”

Read More

WIRELESS

TDK Ventures Invests in XCOM Labs

TDK | May 30, 2022

TDK Corporation today announced that its subsidiary TDK Ventures, Inc. has decided to invest in wireless communications disruptor XCOM Labs to accelerate the development of their 5G and wireless communications solutions, which prioritize bandwidth capacity, latency reduction/elimination, and compute load balancing. XCOM is developing wireless technologies to allow smart manufacturing, automation, off-site training, and more immersive telework experiences in the future of work and Industry 4.0. This extends beyond medical, entertainment, and even defense applications to aid in the training and preparation of military troops. Many of the breakthrough technologies seen in the 2G/3G/4G revolutions were developed by XCOM's leadership team, which included Dr. Paul Jacobs, Derek Aberle, and Matt Grob. As present infrastructure cannot keep up with the need for 5G and wireless infrastructure, there is a large demand for further growth and adoption of supporting technologies. Each "G" generation signifies an effort to increase wireless transmission speed, capacity, and overall value. This necessitates not only hardware and software improvements, but also the use of either frequency spectra in new and novel waves or very new frequency bands. The balance of energy, frequency, and transmission is one of several compromises. Higher frequency – and consequently energy signals – can transport more information in less time but degrade faster over distance. In terms of infrastructure, this implies that more transmitting "nodes" in the network are required to convey higher frequency signals over a given region. XCOM is developing technologies that will level the playing field. Their solutions aim to increase spectrum capacity and utility by more than tenfold, allowing the potential promised by 5G and next-generation developers to become a reality. XCOM, for example, is developing further to take digital transformation to the next level via extended reality (XR). They are building a high throughput, low latency wireless technology to enable seamless virtual reality (VR) and augmented reality (AR) experiences utilizing a globally accessible 60GHz millimeter wave spectrum. What was previously constrained by the necessity for heavy processing equipment nearby or the poor throughput of smartphone processing is now becoming a full system capable of immersing the user in a metaverse or digital world environment. This will be a significant advancement in the integration of edge computing processing to deliver a more natural user experience. The XCOM team is set on continuing our tradition of excellence and innovating in the wireless space. We understand how important high throughput/low latency is for the future of compute-heavy applications and are working to deliver those capabilities to create real and positive change in our world and industry applications. Our XR technologies are evidence of this progress and show that seamless processing through edge computing can deliver a truly immersive and agile VR/AR system fit for business, entertainment, and more." XCOM's Dr. Jacobs TDK Ventures shares XCOM's dedication to digital transformation for a better, more sustainable future. TDK Ventures will assist XCOM with scaling the effect of their technology by using their network connections, industry partners, and linking XCOM to other TDK business divisions. The platform team at TDK Ventures also offers early product validation, pilots, customer/channel/ecosystem access, market knowledge, operational experience (e.g., materials, manufacturing, fabless, supply chain), and go-to-market/branding coaching.

Read More

WIRELESS

Vislink Showcases Innovative 5G & Cloud-Based Wireless Solutions

Vislink | May 27, 2022

Vislink, a worldwide leader in the capture, distribution, and management of high quality, live video and data in the media & entertainment, law enforcement, and military industries, presented private network 5G technology during a sports event in the UK to illustrate its potential in broadcast. Vislink and Mobile Viewpoint's adoption heralds a revolution in remote production processes by extending bi-directional IP connections to the edge and allowing virtualized production in the cloud. Vislink's breakthroughs were on display at the Gallagher Premiership Rugby match between Saracens and the Northampton Saints at StoneX Stadium in London, where it backed a BT-led project to highlight the potential for 5G in broadcast contributions by connecting matchday cameras to a standalone private 5G network. In a UK first, this cameras' feed was included in BT Sport's live broadcasts of the match, a first for a customer broadcast. BT Media & Broadcast, BT Sport, Broadcast RF, and Neutral Wireless headed the project. Vislink installed private network 5G transmitters with COFDM technology to illustrate how 5G technology is growing to offer assured quality, low latency video from wireless cameras to give spectators realistic up-close camera views of the athletic event. Mobile Viewpoint's 5G-enabled encoders send camera feeds to the cloud across a secure, low-latency 5G private network and IP LAN. The director can pick camera feeds for the program stream fully in the cloud, utilizing BT Sport's virtualized production process. This cloud-based installation illustrates Mobile Viewpoint's capacity to bring new cost and operating advantages for distant manufacturing operations. Vislink's long-standing expertise in COFDM-based wireless technologies was bolstered last year with the inclusion of Mobile Viewpoint 5G technology capabilities. Vislink now has a best-of-breed portfolio of resilient and efficient solutions for a broad range of deployment situations thanks to the integration of these technologies. Following on from the world's first stand-alone private 5G network for sports broadcasting during the British MotoGP 2021 Grand Prix, this current public demonstration signals another step forward in the company's 5G wireless technology leadership. Vislink and Mobile Viewpoint showed the world's first glass-to-glass All-IP wireless and virtualized manufacturing during this experiment, which was arranged by BT Sport and BT Media & Broadcast. This momentous trial has now established the future course for live event streaming.

Read More

NETWORK INFRASTRUCTURE

Algeria Telecom Deploys NEC & Juniper Networks' 5G-Ready IP MTA

Algeria Telecom | May 31, 2022

NEC Corporation, a world's leading IT and network transformation service company, and Juniper Networks, a leader in secure, AI-driven networks, have worked with Algeria Telecom, the leader in the Algerian telecommunications market, to roll out its modernized, nationwide IP metro commercial network to support current demand for increased capacity and future 5G and FTTx requires. Algeria Telecom has a mid-term strategy objective to develop a homogenized, optimized transport network with automated capabilities to ensure bandwidth and future-proof its infrastructure in a rising market. NEC and Juniper implemented Algeria Telecom's next-generation IP metro network while maintaining quality of service and the greatest user experience. Algeria Telecom chose Juniper Networks' high-performing, security solutions for SDN-ready, cloud-grade networking and feature-rich, simple and secure connectivity at scale as the innovative foundation of its new platform. The access nodes create separate pre-aggregation, aggregation, and access domains for optimal reliability. Algeria Telecom implemented the Juniper Paragon Automation cloud-native solution package, Paragon Pathfinder and Paragon Planner, to get deep network insight and simplify operations. This ensures 5G and multicloud user experiences. All Juniper systems operate on Junos OS to deliver an easily managed, open solution. Mr. Adel Bentoumi, CEO of Algeria Telecom said that "The successful completion of the IP metro network modernization project by our partners, NEC Corporation and Juniper Networks, will allow us to make the migration to IPV6 and the initiation of digital transformation, as well as the implementation of high speed internet, as we best satisfy the needs of Algeria Telecom customers." The rapid growth of network traffic is a clear indication of the need for modernization and expansion of network capacity. NEC and Juniper have been extremely attentive to our needs, both technical and commercial, working as an extension of our team with their outstanding local engineering abilities, as well as their relentless efforts to assure quality of experience and on-time delivery. Overall, the innovative solutions from Juniper to enable this automated metro cloud architecture have helped us achieve our strategic goals and thrive as we pave the way for 5G.” AllahoumHocine, Head of IP Core, Algeria Telecom Brendan Gibbs, Senior Vice President, Automated WAN Solutions, Juniper Networks said that “Networks have always been a key asset for service providers, but going forward they will be the foundation for every aspect of business transformation in the 5G and cloud era. Algeria Telecom is jumping ahead of the curve by investing in an open, agile and automated network architecture that can drive simplified operations, improved economics and superior end-user experiences.”

Read More

WIRELESS

TDK Ventures Invests in XCOM Labs

TDK | May 30, 2022

TDK Corporation today announced that its subsidiary TDK Ventures, Inc. has decided to invest in wireless communications disruptor XCOM Labs to accelerate the development of their 5G and wireless communications solutions, which prioritize bandwidth capacity, latency reduction/elimination, and compute load balancing. XCOM is developing wireless technologies to allow smart manufacturing, automation, off-site training, and more immersive telework experiences in the future of work and Industry 4.0. This extends beyond medical, entertainment, and even defense applications to aid in the training and preparation of military troops. Many of the breakthrough technologies seen in the 2G/3G/4G revolutions were developed by XCOM's leadership team, which included Dr. Paul Jacobs, Derek Aberle, and Matt Grob. As present infrastructure cannot keep up with the need for 5G and wireless infrastructure, there is a large demand for further growth and adoption of supporting technologies. Each "G" generation signifies an effort to increase wireless transmission speed, capacity, and overall value. This necessitates not only hardware and software improvements, but also the use of either frequency spectra in new and novel waves or very new frequency bands. The balance of energy, frequency, and transmission is one of several compromises. Higher frequency – and consequently energy signals – can transport more information in less time but degrade faster over distance. In terms of infrastructure, this implies that more transmitting "nodes" in the network are required to convey higher frequency signals over a given region. XCOM is developing technologies that will level the playing field. Their solutions aim to increase spectrum capacity and utility by more than tenfold, allowing the potential promised by 5G and next-generation developers to become a reality. XCOM, for example, is developing further to take digital transformation to the next level via extended reality (XR). They are building a high throughput, low latency wireless technology to enable seamless virtual reality (VR) and augmented reality (AR) experiences utilizing a globally accessible 60GHz millimeter wave spectrum. What was previously constrained by the necessity for heavy processing equipment nearby or the poor throughput of smartphone processing is now becoming a full system capable of immersing the user in a metaverse or digital world environment. This will be a significant advancement in the integration of edge computing processing to deliver a more natural user experience. The XCOM team is set on continuing our tradition of excellence and innovating in the wireless space. We understand how important high throughput/low latency is for the future of compute-heavy applications and are working to deliver those capabilities to create real and positive change in our world and industry applications. Our XR technologies are evidence of this progress and show that seamless processing through edge computing can deliver a truly immersive and agile VR/AR system fit for business, entertainment, and more." XCOM's Dr. Jacobs TDK Ventures shares XCOM's dedication to digital transformation for a better, more sustainable future. TDK Ventures will assist XCOM with scaling the effect of their technology by using their network connections, industry partners, and linking XCOM to other TDK business divisions. The platform team at TDK Ventures also offers early product validation, pilots, customer/channel/ecosystem access, market knowledge, operational experience (e.g., materials, manufacturing, fabless, supply chain), and go-to-market/branding coaching.

Read More

WIRELESS

Vislink Showcases Innovative 5G & Cloud-Based Wireless Solutions

Vislink | May 27, 2022

Vislink, a worldwide leader in the capture, distribution, and management of high quality, live video and data in the media & entertainment, law enforcement, and military industries, presented private network 5G technology during a sports event in the UK to illustrate its potential in broadcast. Vislink and Mobile Viewpoint's adoption heralds a revolution in remote production processes by extending bi-directional IP connections to the edge and allowing virtualized production in the cloud. Vislink's breakthroughs were on display at the Gallagher Premiership Rugby match between Saracens and the Northampton Saints at StoneX Stadium in London, where it backed a BT-led project to highlight the potential for 5G in broadcast contributions by connecting matchday cameras to a standalone private 5G network. In a UK first, this cameras' feed was included in BT Sport's live broadcasts of the match, a first for a customer broadcast. BT Media & Broadcast, BT Sport, Broadcast RF, and Neutral Wireless headed the project. Vislink installed private network 5G transmitters with COFDM technology to illustrate how 5G technology is growing to offer assured quality, low latency video from wireless cameras to give spectators realistic up-close camera views of the athletic event. Mobile Viewpoint's 5G-enabled encoders send camera feeds to the cloud across a secure, low-latency 5G private network and IP LAN. The director can pick camera feeds for the program stream fully in the cloud, utilizing BT Sport's virtualized production process. This cloud-based installation illustrates Mobile Viewpoint's capacity to bring new cost and operating advantages for distant manufacturing operations. Vislink's long-standing expertise in COFDM-based wireless technologies was bolstered last year with the inclusion of Mobile Viewpoint 5G technology capabilities. Vislink now has a best-of-breed portfolio of resilient and efficient solutions for a broad range of deployment situations thanks to the integration of these technologies. Following on from the world's first stand-alone private 5G network for sports broadcasting during the British MotoGP 2021 Grand Prix, this current public demonstration signals another step forward in the company's 5G wireless technology leadership. Vislink and Mobile Viewpoint showed the world's first glass-to-glass All-IP wireless and virtualized manufacturing during this experiment, which was arranged by BT Sport and BT Media & Broadcast. This momentous trial has now established the future course for live event streaming.

Read More

Events