Three UK, Nokia Launch 5G-ready Cloud Core Network

Three UK and Nokia have launched what they claim is the world’s first 5G-ready fully integrated cloud core network, in preparation for the rollout of 5G. This new 5G-ready core network, which sits in a virtual environment, offers increased security, flexibility and cost savings, allowing Three to scale more quickly and efficiently. It’s also a critical building block for Three to deliver the UK’s fastest 5G network, set to launch from August this year. The new core network will be managed from Three’s 20 new data centres which have been distributed across the UK to bring its 5G network closer to its customers in order to deliver the lowest possible latency. Three has already successfully tested its new core network with 3,500 Three employees and has started to migrate 4G customer traffic on to the new core. Migration will continue throughout 2019, seamlessly connecting new and existing customers to this next-gen cloud core.

Spotlight

FiberLight, LLC

FiberLight delivers custom network solutions to help your organization thrive in today’s digital economy. Our lightning fast, high bandwidth fiber-optic networks are redundant, scalable, secure and customized to meet even the most exacting project requirements.

OTHER ARTICLES
Network Management, Network Security

Five ways to win at antenna integration

Article | July 17, 2023

Antennas are fundamental to the performance of connected devices, but are often implemented as an afterthought, resulting not only in sub-optimal performance, but also in less-than-ideal form factor. It can also have a negative impact on cost for the device as a whole. It is therefore essential that organisations prioritise antenna design as part of a holistic device design philosophy – bear in mind that it is practically impossible to fix bad antenna design. Early decisions need to be made regarding the relative merits of embedded or external devices and then attention can turn to optimising antenna integration.

Read More
Data Center Networking

Edge Computing and the Future of the Data Center

Article | July 5, 2023

If you are clued into IT, then most likely, you are aware of the latest trending technology, edge computing data centers. Edge Computing ensures exceptional speed, with firm privacy and security compared to the conventional cloud methods, thus making edge data centers an imperative option for everyone. The world is undoubtedly moving faster, thereby perpetually pushing the power of next-generation innovation. Edge computing data center has emerged as a substitute to cloud computing, that keeps the data processing power at the “edge” of the network. But, it also comes with a set of challenges to the network. Edge computing devices that have processing functions are expensive and to operate the older version, additional equipment is required, which incurs extra expenditure. Despite the challenges, edge computing has turned out to be the biggest technology investment. So, let’s break it down here with comprehensive details to understand how this latest trending technology is all set to shape the future of the data center. A Brief on Edge Computing The word edge refers to the literal geographic distribution that brings computation and data storage nearer to the data sources. It improves the response duration and saves bandwidth as it runs fewer processes in the cloud and shifts those processes to local destinations such as on a user’s computer, an edge server, or an IoT for that matter. In a nutshell, edge computing is a topology that enables data to be analyzed, processed, and transferred at the edge of a network, It helps diminish the long-distance communication that takes place between a client and server. A significant advantage of using edge computing lies in its high speed and better reliability. In addition, it offers improved security by distributing processing, storage, and applications across wide-ranging devices and data centers. What’s more, it paves the way for a budget-friendly route to scalability as well as versatility, enabling organizations to expand their computing capabilities through an amalgamation of IoT devices and edge computing data centers. Edge Data Centers and Their Usage! There isn’t any specific explanation that would describe the idea of an edge data center, considering it isn’t one consistent style of the facility. It instead consists of smaller facilities that serve both edge computing and larger-scale cloud services. Since they are located closer to the population, they could easily extend the edge of the network to deliver cloud computing resources and cached content to end-users. Typically, they connect to a larger central data center or multiple computer data centers seamlessly. Latency has forever been a matter of concern for cloud data center managers. In recent times, it has emerged as a key obstacle due to big data, the Internet of Things, cloud and streaming services, and other technology trends. Moreover, in today’s time and age, end-users and devices demand access to applications and services anytime and anywhere, which leaves no room for latency. Consequently, companies across the spectrum are establishing edge data centers to ensure cost-effective and high-functionality ways to provide customers with content and performance. A great way to learn more about the data center would be to understand its usage. The following are some of the services that primarily rely on edge computing: Internet of Things Internet of Things tools essentially require low latency and reliable connections to the data center to function with high intensity. IoT devices add up a vast number of edge computing utilities; thus using edge computing makes it simple and effective. Streaming Content Streaming content is one of the most consumed form of infotainment. Users today want their video to get started with a single click that edge facilities help achieve. Drones While Drones are increasingly getting popular, their features are also massively advancing. For example, with edge computing, drones could be controlled even from far-flung locations without any hitch. Artificial Intelligence AI is one of the most thriving technologies that have taken over the world with its magnificent scalability, To make AI advantageous to the system, it should be able to access data, process it, and communicate with the end-users effectively and quickly which an edge data center allows. Virtual Reality Virtual Reality needs to get updates as quickly as possible to create an immersive world for the users. Though primarily associated with gaming, VR has also gained recognition for different paradigms such as communication, education, and several other significant uses. Edge Computing and Data Centers – The Future! A dedicated 5G Provider Edge Computing is underway, building mammoth telecommunications capabilities into data center growth trends. These facilities could change the dynamics of 5G providers for enterprise brands and emerge as the dedicated 5G providers for organizations. Support sustainable business goals Edge data centers are being looked to as a periphery that can help build more efficient solutions to enable the sector’s sustainability. Edge computing is specifically designed to keep applications and data closer to devices and their users. Therefore, there is little doubt over the impact that edge computing will have on sustainable business goals. Making way for Robot Security Guards Evolution in AI and IoT has drastically changed the human staffing needs inside the data centers and made way for Robots. Currently, Robots have been deployed in some of the hyper-scale data centers for specific tasks. Whether it is the automated inspection, faulty disc locating, or disc charging, with Robots at the helm of affairs, everything can be completed seamlessly. Many data center and robotics professionals are predicting that the next couple of years will be big leaps when it comes to placing more robotics in the data center environment. Bill Kleyman - now Switch EVP of digital solutions - wrote in 2013. How Does One Choose a Location For a Data Center? Data centers are a critical part of any business enterprise operations. Hence, decisions regarding its locations cannot be relegated to an arbitrary choice. In the past, companies used to set up their edge data centers closer to their offices to maintain the proximity. However, that is swiftly changing now as the equipment administration and monitoring can be achieved remotely. With the data center industry transforming, performance is no longer the sole consideration. To create a defining success of the data centers, companies are now looking for different sites for their data centers, primarily focusing on factors like economic, political, social, and geographical. The current scenario highlights the significance of considering Energy efficiency, business continuity plan, and resource optimization. With so much at stake, the edge data centers should be effortlessly accessible. Conclusion Edge computing and data center growth has garnered a lot of interest among the users over the past few years. It will continue to thrive for many more years to come as it meets the eye of the global tech demands and the current and future needs of the users worldwide. Frequently Asked Questions What are the benefits of edge computing? One of the top benefits of edge computing is its quick response time and low latency period across all devices. It also simplifies the bandwidth and creates less risk in corporate security. What are the drawbacks of edge computing? A significant drawback of edge computing is the need of a huge storage capacity. The security challenge is also relatively high due to the massive amount of data stored in it. Moreover, the expensive cost factor is also a disadvantage of it. { "@context": "https://schema.org", "@type": "FAQPage", "mainEntity": [{ "@type": "Question", "name": "What are the benefits of edge computing?", "acceptedAnswer": { "@type": "Answer", "text": "One of the top benefits of edge computing is its quick response time and low latency period across all devices. It also simplifies the bandwidth and creates less risk in corporate." } },{ "@type": "Question", "name": "What are the drawbacks of edge computing?", "acceptedAnswer": { "@type": "Answer", "text": "A significant drawback of edge computing is the need of a huge storage capacity. The security challenge is also relatively high due to the massive amount of data stored in it. Moreover, the expensive cost factor is also a disadvantage of it." } }] }

Read More
Network Infrastructure, Network Management

Enhancing Network Resilience in the Healthcare Sector to Prevent Downtime and Unusable Uptime

Article | July 27, 2023

Your patients have grown to trust your expertise and recommendations in matters regarding their healthcare. As the sector transitions into a more digital playing field, uninterrupted network connectivity is more than just a bonus; it’s a necessity. While there are many different challenges to completely integrating your practice into the digital world, internet outages are the costliest. Downtime can be caused by various factors, which can compromise patient safety, the faith your team instills in you, and your practice’s reputation and revenue. However, investing in the means to maintain a resilient network lets you maximize your network uptime to optimize resources. We'll look at four different strategies and their benefits for your infrastructure so you can focus on what you do best: providing healthcare excellence to your patients. Strengthening Network Infrastructure The traditional way of doing things may be great for your remedies and techniques. Still, with a growing number of patients and their contextually relevant demands, your network needs to be able to accommodate many different booking requests, increase user activity on your server, and store sensitive patient information. High-speed internet connections enhance your network performance and let you, your team, and your patients make the most of your uninterrupted uptime. Fiber-optic networks, when combined with load balancing and proper segmentation, can diffuse and direct network traffic efficiency and prevent congestion, which prevents downtime due to overload. Implementing Network Monitoring and Management Tools Much like your patients visit your practice to ensure everything is all right with the current state of their health, your network must also receive the same treatment. Identifying and pre-emptively resolving potential issues and vulnerabilities will prevent much more destructive or expensive problems from occurring. Use real-time tools to monitor your bandwidth usage and gain visibility of potential bottlenecks. Tools that offer risk monitoring deliver alerts about critical events that pose a threat to your business continuity. Your IT team will be better equipped to troubleshoot issues promptly and optimize performance. Conducting Regular Network Assessments and Audits Once you have the proper monitoring tools to manage your network topology better, proactive troubleshooting is a great way to spot-check whether your current solution is working as it should. A network audit is much like proactive troubleshooting; you are looking to see if anything could harm the overall system and catch it before it can develop. When auditing a network, the primary focus should be security measures. If patient and confidential data is not secure, the smooth operations of your business are the least of your worries. When conducting an audit, consulting with a network service provider will help identify issues with your protocols, data encryption, and firewall configuration. Establishing Redundancy and Disaster Recovery Plans Backing up private and confidential data is crucial to ensuring that sensitive information is not lost or exposed. Minimizing network downtime can often be achieved by having backup systems that will keep running in the event of an attack or outage. For example, a dedicated Cloud Access Network, power supplies, and switches will go a long way. When creating an internet contingency plan, outline steps and protocols with your team that you will take in the event of a complete failure, including things such as brand reputation management, customer service, and data loss prevention. Looking Forward As the lines between in-person and digital are blurred, navigating the complexities of implementing a robust network is paramount to your business. Strengthening your infrastructure, integrating redundant systems, and conducting regular audits and assessments with the proper monitoring and management tools will help you maximize uptime usage and minimize network downtime. Although overwhelming, working with a reputable network service provider can help you embrace your network topology to remain competitive.

Read More

How to Increase Network Security with SD-WAN

Article | August 31, 2021

Network security today is losing the battle and a lot of it is blamed upon the traditional security devices. Imagine running next-gen IT Infrastructure secured by security tools made to secure legacy IT.Data breaches have increased substantially and IT professionals are continuously looking at new ways to improve their network security. In this scenario, SD-WAN emerges as one formidable option to implementthat will bolster your network security. Table of Contents: - What is SD-WAN? - How does SD-WAN work? - What are the main benefits of SD_WAN to network security? - What are the other advantages of SD-WAN? . Let’s dig into it. What is SD-WAN? SD-WAN stands for software-defined wide area network (or networking). A WAN is a connection between local area networks (LANs) separated by a substantial distance—anything from a few miles to thousands of miles. The term software-defined implies the WAN is programmatically configured and managed. So, it can be easily adapted quickly to meet changing needs. How does SD-WAN work? An SD-WAN connects end users to virtually any application, hosted at any location (e.g., in the public cloud or a company data center), via the best available or most feasible transport service, whether that’s an MPLS (Multiprotocol Label Switching), broadband, cellular or even satellite internet link. To deliver this level of flexibility and performance to users in digital workspaces, an SD-WAN utilizes a control function that continuously analyzes traffic flows across the WAN and intelligently directs traffic in accordance with current policies. Centralized control The primary means of control in an SD-WAN is centralized. It often resides in a SaaS application running on a public cloud. Control is decoupled from the hardware to simplify network management and improve the delivery of services. SD-WAN appliances (and virtual appliances) follow operational rules passed down from the central controller. This greatly reduces or eliminates the need to manage gateways and routers on an individual basis. Multi-connection, multi-transport SD-WAN gateways support hybrid WAN, which implies that each gateway can have multiple connections using different transports—MPLS, broadband Internet, LTE, etc. A virtual private network (VPN) is typically set up across each WAN connection for security. Consequently, the SD-WAN can be an overlay spanning a diverse communications infrastructure. Dynamic path selection Another feature of SD-WAN is dynamic path selection—the ability to automatically and selectively route traffic onto one WAN link or another depending on network conditions or traffic characteristics. Packets may be steered onto a particular link because another link is down or not working very well, or to balance network traffic across all available links. SD-WAN can also identify packets by application, user, source/destination, etc. and send them down one path or another based on those characteristics. Policy-based management Policy is what determines where dynamic path selection will steer traffic and what level of priority (quality of service, or QoS) it is given. Business intentions can be implemented as policies via the central management console. New and updated policies are translated into operational rules and downloaded to all SD-WAN gateways and routers under control. For example, to ensure the best performance for VoIP and interactive web conferences, a policy may be created by giving their packets transmission priority and routing them onto low-latency paths. Cost savings can be realized by sending file back-ups across a broadband Internet connection. WAN traffic that requires a high level of security can be restricted to private connections (e.g., MPLS) between sites and required to pass through a robust security stack when entering the enterprise. Service chaining SD-WAN has the ability chain itself together with other network services. WAN optimization (acceleration) is often combined with SD-WAN to improve network and application performance. Internet traffic leaving and entering a branch office may be routed across a VPN to a cloud-base security service to strike a balance between performance, security, and cost. Read more: GET THE MOST OUT OF YOUR SD-WAN: FEATURES YOU NEED TO START USING TODAY What are the main benefits of SD_WAN to network security? Eliminate VPN concerns One of the first areas in which SD-WAN impacts security is when a company uses the internet as a method of transport. Before SD-WAN came along and companies were using internet as a backup or even a primary transport method, they would build a VPN or a DMVPN to ensure secure transport of their traffic. This introduces a couple of issues, the first of which is this proliferation of VPNs that has to be managed. The company must have firewalls sitting at their data center, along with a VPN device or firewall sitting in the remote locations to be able to do these VPNs. Every site is dependent on the effort to be up on the network. - Hamza Seqqat, Director of Solutions Architecture, Apcela Failover is an issue with this VPN approach, he said. Companies can’t seamlessly failover from a fiber-based type of transport without having to strike some keys in between. It's hard and expensive to do seamless failover. “Now you don't have to have firewalls for VPNs. You don't have to worry about building your own VPNs or encrypting your traffic,” Seqqat said. “Every SD-WAN product comes with a controller that takes care of things seamlessly. That means there is this smart software-defined engine that builds all these IPsec tunnels between all the locations as soon as you plug the device in. You're not actually having to build a VPN—the controller does it automatically for you, so all you have to do is give the device an IP address or enable DHCP and let it pick an IP address from the DHCP server. Suddenly it's on the network and its building tunnels to all the sites.” He added that the SD-WAN controller builds a full mesh, so it can talk to every one of the sites without having to go back to the data center. This feature alone can reduce a company’s security footprint significantly because the site-to-site traffic becomes secure, easy, and seamless. Reduce traffic going through security A second significant benefit of SD-WAN that impacts security strategy is that it reduces the amount of traffic that needs to go through security parameters because all site-to-site traffic is encrypted. This makes security a bit easier to manage.“For a lot of companies, when they do VPNs for site-to-site traffic, they have to go through firewalls or some kind of encryption mechanism, and that increases their security footprint. It increases the complexity and the cost of security,” Seqqat said. “SD-WAN changes how traffic is routed through security.” Seqqat gave an example of a site that has a gig worth of bandwidth, and out of that gig of bandwidth, some traffic goes to the internet and some goes to site-to-site. “Without SD-WAN, generally you would have to run that whole gig through a firewall, and the firewall will split the traffic into what goes to the data center and what goes to the internet,” he said. “When you do SD-WAN, you don't have to do that. You can separate the traffic at the SD-WAN with a split tunnel, so you take half of the traffic and push it through the firewall to go to the internet and the other half goes straight site-to-site without having to go through a security parameter. Now you have a firewall to handle 500 megs as opposed to a gig, and that makes a huge difference because most security products are based on throughput and utilization. So, that can bring some cost benefits and ease management as well.” Security inherent to SD-WAN A third area where SD-WAN changes security strategy is the fact that certain security features can be implemented directly through the SD-WAN platform, which reduces costs and complexity in the actual security platform. “This depends on what aspects of security you're talking about,” Seqqat said. “For example, security is included in the Silverpeak SD-WAN product, so the Silverpeak devices really do most of the security for you. You don't have to deploy another firewall on top of that. With Versa’s SD-WAN, you can virtualize the firewall, so there’s no need to deploy physical firewalls.” For sites that simply need very basic security, SD-WAN has some inherent security capabilities. It can do things such as allow and deny certain sites and limit traffic that goes to certain sites. When you look at most SD-WAN products, you can usually kind of steer toward one or another based on your security requirements. Deploying SD-WAN in itself can really eliminate the need for security at several locations or extend the security you have been using. - Hamza Seqqat, Director of Solutions Architecture, Apcela Simplify use of security platforms In his final point, Seqqat said SD-WAN providers are making a lot of progress in partnering with both cloud security providers and cloud service providers. By making traffic encrypted and secure via SD-WAN, security platforms will only have to deal with public internet traffic. “SD-WAN providers are really working towards partnering and certifying different security products,” he said. “Consider Zscaler as an example. Some SD-WAN products automatically route all your traffic through Zscalar, which does a cloud-based security parameter before it goes out to the internet or to cloud service providers.” Seqqat said the most important part comes in the fact that Zscalar is distributed across 35 or 40 data centers that are all security parameters. “Making that routing decision as to what data center your traffic goes through before it goes out to the Internet is extremely important to performance,” he said. “If your Office 365 instance is hosted in Seattle and your users in Europe are trying to reach that, which Zscalar data center the traffic is going to go through before it goes through the Seattle instance of O365 makes all the difference in what latency is going to be at round trip. “SD-WAN provides somewhat of an automation and optimization of how traffic goes through Zscalar data centers based on performance metrics. SD-WAN can pull latency and jitter and packet loss and all that kind of stuff, so there is some intelligence that happens when a routing decision is being made as to where user traffic is going to go for security scrubbing or security features before it goes out to the cloud provider or to the Internet. That’s a huge feature that comes into play whenever you deploy SD-WAN.” Read more: FOR SERVICE PROVIDERS SD-WAN IS A MIXED BLESSING What are the other advantages of SD-WAN? SD-WAN has many advantages when implemented well: More predictable and reliable application performance, which helps support users in any digital workspace, across all connections. Superior connection security for cloud applications, without the performance tradeoffs of MPLS backhauling. Congestion reduction due to lack of bandwidth or brownouts with aggregation of bandwidth via multiple bonded and disparate or redundant links. More reliable access to apps and fewer slowdowns due to congestion. Resiliency and redundancy with fast failover when outages impact WAN connections. Quality of service for prioritizing business-critical application traffic. Fast deployments that fuel business agility when bringing applications online at a branch office, or simply changing the configurations. Zero-touch provisioning allows fast set up of sites in minutes with local staff instead of hours or days. Reduced network transport costs and more flexibility through the use of MPLS-alternatives like broadband and cellular. Quick procurement of bandwidth from multiple transport services, contrast to the long lead times needed with legacy WAN carrier-based technologies. Simplified administration with a centralized console eliminates the complexity of configuring edge devices in the field. Deep SD-WAN analytics to monitor links for performance characteristics. Analytics benefit administrators who can use them when troubleshooting problems across the WAN. Simpler branch office infrastructure that doesn’t require management of as many single-function devices Intelligent traffic steering and dynamic path selection Integrated security with leading 3rd-party solutions, including those for SaaS security Conclusion Interest in SD-WAN among organizations is on the rise, and we hope to see a tremendous rise in its adoption in network security strategies over the next few years. Vendor selection will be one of the factor for successful implementation of SD-WAN, as many are quickly developing new and effective software-defined platforms. An ideal vendor would be the one who effectively addresses your specific pain points and is able to meet your current as well as future requirements. Read more: SD-WAN SECURITY: THE IMPACT OF ORCHESTRATED SERVICES MULTIPLICITY

Read More

Spotlight

FiberLight, LLC

FiberLight delivers custom network solutions to help your organization thrive in today’s digital economy. Our lightning fast, high bandwidth fiber-optic networks are redundant, scalable, secure and customized to meet even the most exacting project requirements.

Related News

Enterprise Mobility,Mobile OS

MATRIXX Software’s Digital Commerce Platform Available in Microsoft’s Azure Marketplace

MATRIXX | January 27, 2023

5G monetization solutions leader, MATRIXX software, yesterday announced that the MATRIXX Digital Commerce Platform (DCP) is now available on the Microsoft Azure Marketplace, an online store providing software and services to be used with the Azure cloud computing platform. MATRIXX DCP, a cloud native monetization platform gives Communications Services Providers (CSPs) a wide range of monetization options, making it simpler to take advantage of 5G revenue prospects. By installing MATRIXX DCP on Azure Kubernetes Service (AKS), CSPs may take full advantage of the reliable Azure cloud platform's benefits for the vital goal of monetizing new and cutting-edge services. With a no-code, cloud-native, real-time platform, MATRIXX DCP, a 3GPP-compliant converged charging solution, enables telcos to monetize at web scale. With MATRIXX DCP, operators can scale swiftly in the 5G era and beyond, create differentiated digital consumer experiences, and drive innovation. Marc Price, CTO at MATRIXX Software, said, “Multi-cloud deployments are increasingly important for operators around the world, and are defining the next era of telecommunications.” He further added, “MATRIXX empowers our customers to have access to advanced monetization capabilities, wherever they choose to deploy. Microsoft is a trusted cloud ecosystem partner for CSPs, and with MATRIXX DCP in the Microsoft Azure Marketplace, telcos can easily procure and deploy monetization capabilities for emerging services.” About MATRIXX Software Matrix Software provides converged charging and commerce solutions. It’s cloud-native Digital Commerce Platform offers mission-critical, network-grade software that opens new prospects for network monetization. MATRIXX gives service providers the agility they need to quickly build, deploy, and monetize new products and services because to its no-code configuration features. Many of the world’s top IoT players, network infrastructure providers, and communications firms run on the MATRIXX platform. Utilizing business innovation and on-demand customer experience through MATRIXX enables businesses to compete better, produce new revenue, and pursue growth possibilities across markets and verticals.

Read More

Wan Technologies,Wireless,5G

AMD and Viettel Collaborate on 5G Mobile Network Expansion

AMD | December 05, 2022

AMD and Viettel High Tech (Member of Viettel Group) today announced the successful completion of a 5G mobile network field trial deployment conducted by Viettel and powered by AMD Xilinx Zynq™ UltraScale+™ MPSoC devices. As the largest telecom operator in Vietnam serving more than 130 million mobile customers, Viettel High Tech has a rich history of using AMD radio technology with prior 4G deployments and is now accelerating new networks via new 5G remote radio heads. Designed to meet the growing capacity and performance requirements of mobile users globally, the Viettel 5G mobile network is expected to be completed by the end of 2022. AMD is the exclusive radio unit silicon supplier for Viettel’s indigenous 5G radio development. After the successful completion of the first field trial, Zynq MPSoCs are now set to be extended to an additional 300 Macro 8T8R base stations and 900 5G 8T8R Macro radios. The Zynq UltraScale+ MPSoC was also chosen by Viettel for its first-generation 64T64R Massive MIMO radio which is currently being optimized for field trials. Viettel is developing the next generation of radios to also include Zynq UltraScale+ RFSoC devices, to provide industry-leading integration and higher performance. “Viettel is committed to advancing mobile technology leadership by working closely with AMD to incorporate its adaptable SoC technology into our new generation of 5G networks. Going from VHT's history of making 4G BTS, this decision to scale for the growing demands of 5G was based on evaluating various factors including flexibility, simplification, design stability and the experience of engineers.” Nguyen Vu Ha, general director of Viettel High Tech “5G provides new opportunities to offer higher levels of performance, power efficiency and new services along with increased reliability required to meet the growing data demands of cellular networks,” said Yousef Khalilollahi, corporate vice president of APAC sales, Adaptive and Embedded Computing Group, AMD. “We are proud of our close collaboration with Viettel and remain focused on enabling its mobile network to deliver the optimal end-user experience as well as the flexibility to evolve and grow as Viettel’s user base and required bandwidth continue to increase globally.” About Viettel High Tech As the R&D arm of Viettel Group, Viettel High Tech develops full 5G network architecture including 5 layers: Service/App layers, Core layers, Transportation layers, Access layers, Devices; makes Vietnam one of the few countries that can produce 5G equipment. Collaboration with the leading partners is VHT’s strategy. With the desire to experiment, exchange knowledge, further develop diverse fields, VHT is moving to accompany the international high-tech community. About AMD For more than 50 years AMD has driven innovation in high-performance computing, graphics and visualization technologies. Billions of people, leading Fortune 500 businesses and cutting-edge scientific research institutions around the world rely on AMD technology daily to improve how they live, work and play. AMD employees are focused on building leadership high-performance and adaptive products that push the boundaries of what is possible.

Read More

Network Infrastructure,Network Management,Wan Technologies

Verizon continues to deploy 5G Ultra Wideband faster than expected

Verizon | December 06, 2022

Verizon now covers more than 175 million people with their ultra fast, ultra reliable 5G Ultra Wideband service, and will offer nationwide 5G Ultra Wideband in Q1 2023. The ongoing C-Band rollout is a full 13 months ahead of the original schedule, and continues to accelerate. Less than 21 months after announcing the results of the FCC’s C-band auction and after securing early access to an additional 30 markets this year, Verizon accelerated its build plan and surpassed its goal of reaching 175 million people covered by the end of 2022, a month ahead of schedule. “Our customers don’t stand still and neither does our network. Today, more than one out of every two Americans now have access to 5G Ultra Wideband. We know our customers rely on our service every day and we work for them – continuously enhancing, expanding and improving our wireless network. And as proud as I am to have crossed this milestone, I am equally proud of the way we are building our network – with the most advanced technologies, industry leading security, a robust fiber underpinning and a robust and varied spectrum portfolio. We are building this right. We are building this as a platform for innovation for years to come.” Hans Vestberg, Chairman and CEO of Verizon. Verizon’s 5G Ultra Wideband brings power and performance comparable to a wired broadband internet connection to customers’ pockets. With download speeds up to one gigabit per second and the capacity to support data-heavy actions, 5G Ultra Wideband frees people up to do things on the go that many could only do before when connected to their home internet service. This includes everything from downloading huge documents and seamlessly streaming movies in HD audio and video, to playing console quality games and conducting video chats, video conferencing and FaceTime calls with clear sound and video. Verizon customers have much more to look forward to Verizon will continue to build out its 5G Ultra Wideband network using C-band spectrum providing service for millions more customers in the coming months, but Verizon’s engineers are not losing sight of the other critical components that will give customers the most reliable, secure, and robust experience possible on the Verizon network. In addition to providing greater coverage, especially in rural and suburban areas, Verizon will also enhance capacity by activating 100 MHz of C-Band spectrum in many markets, a significant step up from the 60 MHz of spectrum available when deployment first began. Once all of its licensed spectrum is made available, Verizon will have up to 200 MHz of C-Band spectrum deployed in many markets, which will provide exceptional speed and capacity. Complementing the wide coverage of Verizon’s premier C-Band spectrum, Verizon will continue deploying 5G on mmWave spectrum which provides for exponential capacity in areas with significantly dense populations such as venues, stadiums, arenas, airports, major metro areas, office complexes and more. mmWave will also continue to be used for private network deployments when enterprise customers need the fastest, most robust 5G service available for their enterprise applications from wireless manufacturing solutions to connected vehicles to remote healthcare and more. In addition to making 5G more accessible to more people, Verizon will continue focusing on building out the advanced technologies that provide increased security, reliability and customized experiences for customers. Those advancements include fully deploying the 5G core with Verizon’s proprietary cloud platform built specifically for telco workloads, advancing the fiber network to handle exponential increases in data traffic, continuing massive virtualization of the network to add programmability and flexibility into the network, using artificial intelligence to drive reliability and performance, continuing to develop edge computing capabilities to drive down latency, and continuing to advance antenna configurations to drive speed and efficiency.

Read More

Enterprise Mobility,Mobile OS

MATRIXX Software’s Digital Commerce Platform Available in Microsoft’s Azure Marketplace

MATRIXX | January 27, 2023

5G monetization solutions leader, MATRIXX software, yesterday announced that the MATRIXX Digital Commerce Platform (DCP) is now available on the Microsoft Azure Marketplace, an online store providing software and services to be used with the Azure cloud computing platform. MATRIXX DCP, a cloud native monetization platform gives Communications Services Providers (CSPs) a wide range of monetization options, making it simpler to take advantage of 5G revenue prospects. By installing MATRIXX DCP on Azure Kubernetes Service (AKS), CSPs may take full advantage of the reliable Azure cloud platform's benefits for the vital goal of monetizing new and cutting-edge services. With a no-code, cloud-native, real-time platform, MATRIXX DCP, a 3GPP-compliant converged charging solution, enables telcos to monetize at web scale. With MATRIXX DCP, operators can scale swiftly in the 5G era and beyond, create differentiated digital consumer experiences, and drive innovation. Marc Price, CTO at MATRIXX Software, said, “Multi-cloud deployments are increasingly important for operators around the world, and are defining the next era of telecommunications.” He further added, “MATRIXX empowers our customers to have access to advanced monetization capabilities, wherever they choose to deploy. Microsoft is a trusted cloud ecosystem partner for CSPs, and with MATRIXX DCP in the Microsoft Azure Marketplace, telcos can easily procure and deploy monetization capabilities for emerging services.” About MATRIXX Software Matrix Software provides converged charging and commerce solutions. It’s cloud-native Digital Commerce Platform offers mission-critical, network-grade software that opens new prospects for network monetization. MATRIXX gives service providers the agility they need to quickly build, deploy, and monetize new products and services because to its no-code configuration features. Many of the world’s top IoT players, network infrastructure providers, and communications firms run on the MATRIXX platform. Utilizing business innovation and on-demand customer experience through MATRIXX enables businesses to compete better, produce new revenue, and pursue growth possibilities across markets and verticals.

Read More

Wan Technologies,Wireless,5G

AMD and Viettel Collaborate on 5G Mobile Network Expansion

AMD | December 05, 2022

AMD and Viettel High Tech (Member of Viettel Group) today announced the successful completion of a 5G mobile network field trial deployment conducted by Viettel and powered by AMD Xilinx Zynq™ UltraScale+™ MPSoC devices. As the largest telecom operator in Vietnam serving more than 130 million mobile customers, Viettel High Tech has a rich history of using AMD radio technology with prior 4G deployments and is now accelerating new networks via new 5G remote radio heads. Designed to meet the growing capacity and performance requirements of mobile users globally, the Viettel 5G mobile network is expected to be completed by the end of 2022. AMD is the exclusive radio unit silicon supplier for Viettel’s indigenous 5G radio development. After the successful completion of the first field trial, Zynq MPSoCs are now set to be extended to an additional 300 Macro 8T8R base stations and 900 5G 8T8R Macro radios. The Zynq UltraScale+ MPSoC was also chosen by Viettel for its first-generation 64T64R Massive MIMO radio which is currently being optimized for field trials. Viettel is developing the next generation of radios to also include Zynq UltraScale+ RFSoC devices, to provide industry-leading integration and higher performance. “Viettel is committed to advancing mobile technology leadership by working closely with AMD to incorporate its adaptable SoC technology into our new generation of 5G networks. Going from VHT's history of making 4G BTS, this decision to scale for the growing demands of 5G was based on evaluating various factors including flexibility, simplification, design stability and the experience of engineers.” Nguyen Vu Ha, general director of Viettel High Tech “5G provides new opportunities to offer higher levels of performance, power efficiency and new services along with increased reliability required to meet the growing data demands of cellular networks,” said Yousef Khalilollahi, corporate vice president of APAC sales, Adaptive and Embedded Computing Group, AMD. “We are proud of our close collaboration with Viettel and remain focused on enabling its mobile network to deliver the optimal end-user experience as well as the flexibility to evolve and grow as Viettel’s user base and required bandwidth continue to increase globally.” About Viettel High Tech As the R&D arm of Viettel Group, Viettel High Tech develops full 5G network architecture including 5 layers: Service/App layers, Core layers, Transportation layers, Access layers, Devices; makes Vietnam one of the few countries that can produce 5G equipment. Collaboration with the leading partners is VHT’s strategy. With the desire to experiment, exchange knowledge, further develop diverse fields, VHT is moving to accompany the international high-tech community. About AMD For more than 50 years AMD has driven innovation in high-performance computing, graphics and visualization technologies. Billions of people, leading Fortune 500 businesses and cutting-edge scientific research institutions around the world rely on AMD technology daily to improve how they live, work and play. AMD employees are focused on building leadership high-performance and adaptive products that push the boundaries of what is possible.

Read More

Network Infrastructure,Network Management,Wan Technologies

Verizon continues to deploy 5G Ultra Wideband faster than expected

Verizon | December 06, 2022

Verizon now covers more than 175 million people with their ultra fast, ultra reliable 5G Ultra Wideband service, and will offer nationwide 5G Ultra Wideband in Q1 2023. The ongoing C-Band rollout is a full 13 months ahead of the original schedule, and continues to accelerate. Less than 21 months after announcing the results of the FCC’s C-band auction and after securing early access to an additional 30 markets this year, Verizon accelerated its build plan and surpassed its goal of reaching 175 million people covered by the end of 2022, a month ahead of schedule. “Our customers don’t stand still and neither does our network. Today, more than one out of every two Americans now have access to 5G Ultra Wideband. We know our customers rely on our service every day and we work for them – continuously enhancing, expanding and improving our wireless network. And as proud as I am to have crossed this milestone, I am equally proud of the way we are building our network – with the most advanced technologies, industry leading security, a robust fiber underpinning and a robust and varied spectrum portfolio. We are building this right. We are building this as a platform for innovation for years to come.” Hans Vestberg, Chairman and CEO of Verizon. Verizon’s 5G Ultra Wideband brings power and performance comparable to a wired broadband internet connection to customers’ pockets. With download speeds up to one gigabit per second and the capacity to support data-heavy actions, 5G Ultra Wideband frees people up to do things on the go that many could only do before when connected to their home internet service. This includes everything from downloading huge documents and seamlessly streaming movies in HD audio and video, to playing console quality games and conducting video chats, video conferencing and FaceTime calls with clear sound and video. Verizon customers have much more to look forward to Verizon will continue to build out its 5G Ultra Wideband network using C-band spectrum providing service for millions more customers in the coming months, but Verizon’s engineers are not losing sight of the other critical components that will give customers the most reliable, secure, and robust experience possible on the Verizon network. In addition to providing greater coverage, especially in rural and suburban areas, Verizon will also enhance capacity by activating 100 MHz of C-Band spectrum in many markets, a significant step up from the 60 MHz of spectrum available when deployment first began. Once all of its licensed spectrum is made available, Verizon will have up to 200 MHz of C-Band spectrum deployed in many markets, which will provide exceptional speed and capacity. Complementing the wide coverage of Verizon’s premier C-Band spectrum, Verizon will continue deploying 5G on mmWave spectrum which provides for exponential capacity in areas with significantly dense populations such as venues, stadiums, arenas, airports, major metro areas, office complexes and more. mmWave will also continue to be used for private network deployments when enterprise customers need the fastest, most robust 5G service available for their enterprise applications from wireless manufacturing solutions to connected vehicles to remote healthcare and more. In addition to making 5G more accessible to more people, Verizon will continue focusing on building out the advanced technologies that provide increased security, reliability and customized experiences for customers. Those advancements include fully deploying the 5G core with Verizon’s proprietary cloud platform built specifically for telco workloads, advancing the fiber network to handle exponential increases in data traffic, continuing massive virtualization of the network to add programmability and flexibility into the network, using artificial intelligence to drive reliability and performance, continuing to develop edge computing capabilities to drive down latency, and continuing to advance antenna configurations to drive speed and efficiency.

Read More

Events