The Wi-Fi Universe: Stats and Facts

4.2 billion users. 2 billion in Asia itself, or 49% of the user universe. A jump of 1066% from 2000 till 2018. Fact is that Wi-Fi is at the center of the modern world, key to growth and development across key sectors like education and finance, and critical to reach goals related to social mobility, economic growth, and literacy.

Spotlight

COMSovereign Holding Corp.

COMSovereign Holding Corp. (Nasdaq: COMS) is building the path to 5G, Made in the USA, connecting communities with modernized mobile networks of the future, now. Based in Dallas with a new manufacturing facility in Tucson, Arizona, COMSovereign will be the Made In America source for the future of 5G infrastructure.

OTHER ARTICLES
Network Infrastructure, Network Management

The 5G Enterprise Private Network: A Private Network for the Future

Article | July 10, 2023

In the United States, private networks saw the sun for the first time in the early 1970s by AT&T. The networks were majorly operated over telecommunication networks. In the 1990s, with the evolution of Internet technology, a new type of network known as virtual private networks emerged. This type of network was built on public infrastructure, and the data was encrypted to protect it from eavesdroppers. Nowadays, networks developed by businesses are called Enterprise Private Networks (EPN) when privacy is maintained via security processes and tunneling protocols such as Layer 2 Tunneling Protocol. The objective of an EPN is to provide high-speed internet access and data sharing within an organization. Businesses can utilize Wi-Fi in their workplaces to share internet access and resources. This type of private network also employs routers, switches, fiber optics, virtual devices, and modems. Security is also a significant factor while developing an enterprise network. Different firewalls are set at access points to ensure safe data transfer between systems. Enterprise private networks can be built in various ways, including: Virtual private network (VPN) Local area network (LAN) Wide area network (WAN) Cloud-based networks Let’s dive deeper into EPN. Enterprise Private Network: Reasons to Deploy It Today! Giving its intended objective, enterprise private networks can be considered to provide a variety of conceivable benefits to an organization. Enhancing Network Security A company must adhere to strict procedures to safeguard its security. Networks are vulnerable to cyberattacks, and some business data contains sensitive information that might be lost or acquired by the wrong people. However, data circulation is critical to long-term business operations, which is why incorporating an enterprise private network is a wonderful way to keep security issues at bay even while allowing the organization to more easily manage its critical operations. This is a key reason why most businesses do not hesitate to use EPN, regardless of how difficult it is to set up or the upfront costs associated with it. Economizing Measures Keeping overheads to a minimum is critical for achieving a convincing ROI at the end of the day. Most businesses take stringent steps to ensure that they remain profitable. Cutting major expenditures is a helpful technique to do this, and the deployment of EPN is a perfect example. Because important business data can be exchanged over the network where key stakeholders can access it, the expense of physically transferring data and resources from one place to another is reduced. Moreover, a significant amount of valuable time is saved since any type of data and resources can be uploaded across the network in a matter of minutes. Centralization Another important element that is essential to an organization's success is business continuity. Different departments of an organization are interconnected to one another through an enterprise private network and can effortlessly share resources with one another. As earlier stated, it enables time efficiency and allows companies to keep progressing toward gradually achieving their day-to-day demands. Enterprise Private Network: A Catalyst to 5G Digital Transformation Businesses now depend on technology that has undergone significant transformation in recent years. Organizations are increasingly relying on feature-rich apps to operate their operations and drive innovation. Connectivity is at the heart of keeping everything operating smoothly and effectively, and 5G is expected to provide even more pace and potential. 5G is enticing because its infrastructure differs from prior generations of cellular networks. The 3G and 4G networks were designed with hardware-based network operations in mind. 5G, on the other hand, is 'cloud-native,' with network functions stored in software as a Virtual Network Function (VNF) or Cloud-native Network Function (CNF). 5G has the ability to drive digital transformation for companies and organizations by providing faster connection speeds, reduced latency, higher capacity, and better security. Organizations can obtain significant business advantages in automation, security, and safety when 5G is used in combination with a private cellular network. The Importance of 5G on Private Networks Speed 5G provides better bandwidth than 4G LTE networks, which is critical for data-intensive applications. Latency Robotics, manufacturing, remotely operated systems, and vehicle-to-vehicle communications all need low latency. Network Slicing The 5G network core offers network slicing, allowing network operators to virtualize network traffic, often in a cloud-based flexible environment. Increased Connection Density 5G will ultimately support 100 times more connected devices per square kilometer, up to one million devices. Multi-Access Edge Computing (MEC) 5G Multi-Access Edge Computing (MEC) moves computational power closer to the network edge, reducing the time required to send data to a centralized data center. Wi-Fi 6 While 5G has considerable benefits over Wi-Fi, the new Wi-Fi 6 version also has greater capacity, reduced latency, and faster speeds than its predecessor, Wi-Fi 5. Industries Leveraging EPN to Enhance Their Capabilities With the expanding digital transformation, business interest in private networks is growing. Enterprises can deploy such networks to explore a broad range of wireless use cases and provide access to areas that are not covered by a public network. These networks can also be customized to meet the needs of certain industries and businesses. With the arrival of 5G, private networks enabled by the technology are positioned to stimulate innovation and allow next-generation enterprise transformation across a wide range of industries. Industries leveraging 5G-enabled enterprise private networks are: Healthcare Healthcare tops the list of rapidly growing industries, requiring private networks. The unprecedented burden caused on healthcare systems worldwide by the COVID-19 pandemic has driven the need for improved connectivity and modernization of infrastructure, prompting hospitals to establish private networks. Manufacturing The manufacturing industry is undergoing a significant digital transformation, which is enabling various new use cases like automated manufacturing. In the industrial arena, private 5G networks play a critical role in increasing the density and efficiency of automation technologies like collaborative mobile robots, automated guided vehicles, AR predictive maintenance, and virtual reality remote devices. Smart Facilities By reducing the reliance on third-party wireless service providers, private 5G networks enable these establishments to build and install the infrastructure most suited to their digital transformation roadmap. Logistics Another high-potential use case for private 5G networks is the logistics industry. With increasing global e-commerce adoption, the continuous movement of products through all logistical checkpoints—including warehouses, ports, and distribution centers—must be monitored and linked through a diverse variety of corporate mobility devices. Mining Another industry with significant potential for private 5G networks is mining. Mine operators want dependable wireless connections in order to leverage digital technologies, but they are often unable to introduce wireless communications to underground locations while still meeting the essential connectivity demands of machinery and mobile employees in open-pit locations. Private networks, which have fewer access points than Wi-Fi, can overcome these difficulties by providing a stable and widespread internet connection to machines, vehicles, and workers throughout a mine. This leads to improved safety, increased production, and a lower carbon footprint. Some of the other industries are Oil and gas, Education, Ports, Smart Cities, etc. Rising Demand for Enterprise Private Network (EPN) As per research analyst Leo Gergs from ABI Research, there are a couple of factors that are causing the surge in demand for private networks for enterprises. These factors are: Rise in demand for automation and enterprise digitalization in every sector of the market, including industrial manufacturing, logistics, oil and gas, etc., because of COVID-19. The private 5G network has arrived, bringing with it irresistible features and use cases for businesses from all industries. Private networks depend on technology from both public carrier networks and business IT, bringing together two disciplines that had previously evolved in quite distinct directions. Industry digitalization, the convergence of telecom and IT, edge migration of cloud apps, and increased spectrum availability are all combined to set the scenario for exploding demand for private 5G. A private 5G network is an enterprise-specific network that offers communication connections to people or items belonging to a single company as well as unique services required for the enterprise's operations. Enterprises across sectors are crunching the math on private 5G, from factories to farms to hospitals to hotels. According to ABI Research, heavy industrial verticals will increase demand for private network installations. Industrial manufacturing and energy production (including mining, oil and gas, and logistics) will contribute $32.38 billion in private network revenues by 2030, accounting for half of the $64 billion in total private network revenues. The need for private 5G networks is increasing as 5G arrives, allowing compelling business use cases and favorable legislative developments on spectrum availability for corporations. TBR projected that the market for private 5G networks would reach $7.5 billion by 2025, rising from $200 million in 2020. Carving the Future With every new cutting-edge technology comes a leap of faith. Businesses and industries can expedite their digital journeys by using 5G private networks to offer secure connections while gathering and managing huge amounts of business-critical data. Private 5G is not simply a new paradigm for network operators; it's also an incredible opportunity for public and private organizations to unleash efficiency, exploit real-time data, and boost revenue. FAQ How Does Enterprise Private Network Work? An enterprise private network is a business computer network that allows business organizations with several offices to securely connect to each other through a network. The primary purpose of an enterprise private network is to share system resources. How to Set Up Your Private 5G Network? To build a private 5G network, businesses need to: The first step is to get the spectrum right-to-use. Acquire 5G equipment such as base stations, mini-towers, and small cells from network equipment or infrastructure providers. Integrate equipment with edge devices like smartphones, routers, sensors, etc. What Is the Cost of Building a 5G Network? A modest tower and 5G cell site will cost between $30,000 and $50,000. If the wireless network is to function during a power failure, the cell site will also need commercial power and batteries.

Read More
Enterprise Mobility, Mobile Infrastructure

Enhancing Network Resilience in the Healthcare Sector to Prevent Downtime and Unusable Uptime

Article | June 16, 2023

Your patients have grown to trust your expertise and recommendations in matters regarding their healthcare. As the sector transitions into a more digital playing field, uninterrupted network connectivity is more than just a bonus; it’s a necessity. While there are many different challenges to completely integrating your practice into the digital world, internet outages are the costliest. Downtime can be caused by various factors, which can compromise patient safety, the faith your team instills in you, and your practice’s reputation and revenue. However, investing in the means to maintain a resilient network lets you maximize your network uptime to optimize resources. We'll look at four different strategies and their benefits for your infrastructure so you can focus on what you do best: providing healthcare excellence to your patients. Strengthening Network Infrastructure The traditional way of doing things may be great for your remedies and techniques. Still, with a growing number of patients and their contextually relevant demands, your network needs to be able to accommodate many different booking requests, increase user activity on your server, and store sensitive patient information. High-speed internet connections enhance your network performance and let you, your team, and your patients make the most of your uninterrupted uptime. Fiber-optic networks, when combined with load balancing and proper segmentation, can diffuse and direct network traffic efficiency and prevent congestion, which prevents downtime due to overload. Implementing Network Monitoring and Management Tools Much like your patients visit your practice to ensure everything is all right with the current state of their health, your network must also receive the same treatment. Identifying and pre-emptively resolving potential issues and vulnerabilities will prevent much more destructive or expensive problems from occurring. Use real-time tools to monitor your bandwidth usage and gain visibility of potential bottlenecks. Tools that offer risk monitoring deliver alerts about critical events that pose a threat to your business continuity. Your IT team will be better equipped to troubleshoot issues promptly and optimize performance. Conducting Regular Network Assessments and Audits Once you have the proper monitoring tools to manage your network topology better, proactive troubleshooting is a great way to spot-check whether your current solution is working as it should. A network audit is much like proactive troubleshooting; you are looking to see if anything could harm the overall system and catch it before it can develop. When auditing a network, the primary focus should be security measures. If patient and confidential data is not secure, the smooth operations of your business are the least of your worries. When conducting an audit, consulting with a network service provider will help identify issues with your protocols, data encryption, and firewall configuration. Establishing Redundancy and Disaster Recovery Plans Backing up private and confidential data is crucial to ensuring that sensitive information is not lost or exposed. Minimizing network downtime can often be achieved by having backup systems that will keep running in the event of an attack or outage. For example, a dedicated Cloud Access Network, power supplies, and switches will go a long way. When creating an internet contingency plan, outline steps and protocols with your team that you will take in the event of a complete failure, including things such as brand reputation management, customer service, and data loss prevention. Looking Forward As the lines between in-person and digital are blurred, navigating the complexities of implementing a robust network is paramount to your business. Strengthening your infrastructure, integrating redundant systems, and conducting regular audits and assessments with the proper monitoring and management tools will help you maximize uptime usage and minimize network downtime. Although overwhelming, working with a reputable network service provider can help you embrace your network topology to remain competitive.

Read More
Network Infrastructure, Network Management

Upcoming 7 Conferences to Attend in Network Monitoring

Article | July 27, 2023

Uncover the future of network monitoring at computer networking conferences. Explore insights, collaborations, and growth opportunities to harness the power of secured network infrastructures. Network monitoring is a critical aspect of the ever-evolving networking industry; helping ensure efficient and secure operation. It involves the continuous surveillance, analysis, and management of network infrastructure, performance, and security. To stay abreast of the latest developments and advancements in this field, industry executives and managers must attend the upcoming network monitoring conferences scheduled between June and September 2023. The events provide a crucial platform for professionals to gain in-depth insights into emerging trends, innovative technologies, and best practices in network monitoring. The computer network monitoring conferences aims to address challenges businesses face with IT infrastructure, operations and cloud. The conferences are broken up into several tracks, each with a different area of focus. The agenda and key speakers offer more opportunities to learn and discover knowledge and improve the network monitoring operations. Top 7 Network Monitoring Conferences of 2023 1.TMA Conference 2023 June 26-30, 2023 | Naples (Italy) The 7th edition of Network Traffic Measurement and Analysis Conference will offer a significant opportunity for leaders in the networking industry. Organized by the prestigious University of Naples Federico II, the TMA Conference 2023 provides a platform for presenting cutting-edge research and controversial work in network measurements. One of the Technical Program Committee (TPC) chairs for this year's conference is Johanna Ullrich, a renowned researcher at SBA Research and the Head of the Networks and Critical Infrastructures Security Research Group. With her expertise and insights, Ullrich will share insights with a compelling keynote speech that will offer valuable knowledge to attendees. Moreover, the event boasts technical sponsorship from reputable organizations such as IFIP, IFIP TC6-WG6.6, IEEE, and IEEE ComSoc, further solidifying its significance in the networking industry. 2.IEEE International Black Sea Conference on Communications and Networking July 4-7, 2023 | Istanbul (Turkey) A significant event for networking industry leaders, IEEE BlackSeaCom 2023, offers grants to participants who have registered and co-authored accepted papers, fostering engagement and recognition within the conference networks. The special session on machine learning and intelligent algorithms for emerging wireless communications brings forth groundbreaking research. Esteemed speakers like Henning Schulzrinne, Melike Erol-Kantarci, Bülent Kaytaz, and BASIL MANOUSSOS to offer valuable insights about network monitoring in the event. Attending this network monitoring conference will allow industry leaders to network, collaborate, and stay updated on the latest advancements in event monitoring and network monitoring events. 3.IEEE International Symposium on Local and Metropolitan Area Networks July 10-11, 2023 | London (UK) IEEE LANMAN 2023 provides a robust platform for industry leaders by bringing together experts to discuss the latest technical advances in local and metropolitan area networking. With a focus on theory and experimentation, LANMAN 2023 invites advanced papers pushing network monitoring events' boundaries. The keynote speakers, including Tommaso Melodia and William Lincoln Smith, are to delve into topics like open RAN systems, edge computing, routing, and network functions. Attending LANMAN 2023 allows industry leaders to expand their conference networks, gain valuable insights, and stay at the forefront of network events and management, empowering them to drive innovation and enhance their network monitoring strategies. 4.International Conference on Computer Communications and Networks (ICCCN 2023) July 24-26 2024 | Hawaii (US) A must-attend event for computer communications and network industry leaders serves as a platform for presenting innovative ideas and fundamental advancements in computer communications and networks. The conference facilitates communication and collaboration among researchers and practitioners, driving scientific and technological innovation to enhance communications and networking. Keynote speakers including, Ness B. Shroff, Puneet Sharma, and Dr. Gene Tsudik will address designing future XG networks, complexities of edge-to-cloud platforms, and compromise/malware detection for low-end devices. Attending ICCCN will help expand network through conferences, gain a deeper understanding, and advance their network monitoring techniques with shared expertise and knowledge. 5.SmartNets 2023 July 25-27, 2023| Istanbul (Turkey) SmartNets 2023 is a pivotal networking conference aiming to bridge the gap between the physical world and cyberspace by connecting everything. The event will bring together experts and researchers from academia to discuss the challenges and solutions in areas like embedded equipment design, resource-constrained media communications, security, data analysis, and services. The conference will be focusing on future scientific issues, covering topics such as Industry 4.0, smart cities, healthcare systems, big data analytics, edge computing, next-generation networks, and more. SmartNets 2023 will enable leaders to gain access to the latest research findings, address digital transformation challenges, explore wireless communication technologies, and exchange experiences on implementing secure and reliable communication services. 6.IEEE International Mediterranean Conference on Communications and Networking September 4-7, 2023 | Dubrovnik (Croatia) IEEE MeditCom is a highly anticipated networking conference that brings together worldwide visionaries from academia, research labs, and industry. The event will focus on addressing the challenges in communications and networking. It will provide a platform for researchers to present their work on various topics, including theoretical and systems research and vertical technologies. By attending IEEE MeditCom, industry leaders in the networking industry will be able to discover the latest advancements and research findings. Furthermore, the conference will offer an opportunity to engage with local IEEE Sections, ComSoc Chapters, and Sister Societies from the Mediterranean region. The presence of distinguished keynote speakers like Gerhard P. Fettweis, Petar Popovski, Jean-Claude Belfiore, Mohamed-Slim Alouini, and Antonia M. Tulino will further enhance the value of this event. 7.Cyber Security Training at SANS Network Security Las Vegas 2023 September 6-11, 2023 | Las Vegas (US) SANS Network Security 2023 offers industry leaders in the network industry the opportunity to learn valuable real-world cybersecurity skills from experts. The event, both live online and in Las Vegas, will provide interactive training with hands-on labs and the chance to participate in NetWars Tournaments. Attending SANS Network Security will allow professionals to enhance their knowledge, network with peers in real-time, and stay up-to-date with industry trends. With courses aligned with GIAC certifications, attendees can validate their expertise in specialized InfoSec, network monitoring domains and job-specific roles. Jon Gorenflo, a prominent figure in the field, is a keynote speaker at the event, and will be sharing his expertise and on-field experience. Conclusion The event listing showcases numerous opportunities for networking businesses to gain a competitive edge. By experiencing these upcoming conferences, industry leaders can tap into the latest research, emerging technologies, and best methods in network monitoring. This invaluable knowledge equips them to make informed decisions, develop innovative solutions, and optimize processes. The conferences allow to connect and enable businesses to explore new avenues, forge strategic alliances, and unlock potential growth opportunities. Ultimately, the comprehensive insights gained from these conferences empower networking businesses to adapt to evolving market dynamics, enhance their capabilities, and thrive in an innovative environment.

Read More
Network Infrastructure, Network Management

Key Network Performance Metrics to Improve Efficiency

Article | July 27, 2023

Discover key network performance metrics to enhance user experience. Explore in-depth latency, throughput, jitter, packet loss, VOIP quality, and MOS score to optimize network performance analysis. Contents 1. Importance of Network Performance Metrics for Performance Analysis 2. Critical Key Network Performance Metrics to Monitor 2.1 Latency 2.2 Throughput 2.3 Jitter 2.4 Packet Loss 2.5 VOIP Qualiy 2.6 MOS Score 3. Steps to Monitor and Measure Network Performance 4. Significance of Monitoring Metrics in Network Troubleshooting 4.1 Provides Network Visibility 4.2 Prevents Network Downtime 4.3 Observe Bandwidth Usage 5. Overcome Monitoring Challenges in Network Performance Metrics 6. Key Takeaway 1. Importance of Network Performance Metrics for Performance Analysis Network performance involves analyzing and evaluating network statistics to determine the quality of services provided by the underlying computer network. Considering various key network metrics, it is primarily measured from the end-users’ perspective. Measuring these metrics, analyzing performance data over time, and understanding the impact on the end-user experience is essential to assess network performance. Measuring network performance requires considering factors such as the location and timing of measurements. For instance, network performance may differ when comparing paths between cities or during periods of varying user demands throughout the day. Therefore, a comprehensive approach to monitoring network performance involves identifying these variables and identifying areas for improvement. Network performance metrics offer valuable insights into any network infrastructure and services. These metrics provide real-time information on potential issues, outages, and errors, allowing one to allocate IT resources efficiently. Understanding end-user demands can create an adaptive network to meet future business needs. However, comprehensive monitoring requires an advanced network monitoring tool to gather, analyze, and interpret data effectively, optimizing network performance. Leveraging relevant metrics can improve network performance, help make informed decisions, enhance network reliability, and deliver a superior user experience. 2. Critical Key Network Performance Metrics to Monitor 2.1 Latency Latency, or network delay, is a crucial performance metric in network monitoring and management. It quantifies the time required to transmit data between destinations. Factors like packet queuing and fiber optic cabling affect network latency. Consistent delays or sudden spikes in latency indicate significant network performance issues. Monitoring and minimizing latency are essential for ensuring optimal network performance. By actively tracking latency, organizations identify and address issues that may cause delays in data transmission, thereby improving overall network responsiveness and minimizing disruptions for end-users. 2.2 Throughput Throughput metrics for network monitoring enable measurement of the data transmission rate across various network segments. Unlike bandwidth, which represents the theoretical data transfer limit, throughput reflects the successful delivery of data packets to their destination. Variations in throughput can occur across different network areas. A low throughput indicates the presence of dropped packets requiring retransmission, and highlights potential performance issues that need attention. Monitoring throughput is crucial for effective network management. By monitoring this performance metric, organizations can gain insights into the actual data transmission rate, ensuring that it aligns with expected levels. 2.3 Jitter Jitter, a key performance metric in network monitoring, refers to the variation in delay between packets, measured as the difference between expected and actual arrival times. It results due to network congestion, routing issues, or other factors, leading to packet loss and degraded application performance. Jitter disrupts the standard sequencing of data packets and can arise due to network congestion or route changes. Monitoring jitter is crucial for identifying and addressing network stability issues and ensuring reliable data transmission. By actively monitoring this performance metric, organizations can address variations in packet delay, mitigating issues that leads to packet loss and enabling proactive troubleshooting. 2.4 Packet Loss Packet loss, a performance management network monitoring metric, represents the number of data packets lost during transmission. It directly affects end-user services, leading to unfulfilled data requests and potential disruptions. Packet loss can arise from various factors, including software problems, network congestion, or router performance issues. Monitoring the entire process precisely to detect and address packet loss, ensures reliable data transmission and optimal network performance. Monitoring packet loss with the right network monitoring software enables timely troubleshooting and optimization of network infrastructure, ultimately enhancing overall network reliability and performance. 2.5 VOIP Quality VoIP (Voice over Internet Protocol) quality is a crucial network performance metric. It refers to the overall performance of a VoIP system in delivering clear and reliable voice communications over the Internet, replacing traditional phone lines. Factors influencing VoIP quality include network bandwidth, latency, packet loss, jitter, and the quality of end-user devices. Monitoring VoIP quality ensures optimal system functionality and high-quality voice communications. Key performance indicators (KPIs) such as mean opinion score (MOS), jitter, latency, packet loss, and call completion rates are utilized to assess and optimize VoIP quality. 2.6 MOS Score Mean opinion score (MOS) is a vital performance metric in network monitoring, rating the perceived quality of a voice call on a scale of 1 to 5. It is a standardized measurement developed by the ITU, an international agency focused on enhancing communication networks. Initially designed for traditional voice calls, the MOS has been adapted to evaluate Voice over IP (VoIP) calls. The MOS score considers various factors, including the specific codec employed for the VoIP call, providing a comprehensive assessment of voice calls quality in network monitoring. 3. Steps to Monitor and Measure Network Performance Step 1: Deploy a Software for Network Monitoring To effectively measure network performance, deploying dedicated network monitoring software is crucial. While temporary tools like traceroutes and pings can provide insights into ongoing problems, they are insufficient for troubleshooting intermittent network issues. Relying on periodic tools for intermittent issues is reliant on chance, as it may only detect problems when they occur during tool usage. By implementing comprehensive network monitoring software, one can proactively monitor and analyze network metrics, historical data, and performance, allowing for timely detection and resolution of both ongoing and intermittent network issues. Step 2: Distribute Monitoring Agents For comprehensive network performance measurement, businesses must distribute monitoring agents strategically across key network locations. These specialized software agents continuously monitor network performance using synthetic traffic, simulating and assessing the end-user perspective. By distributing Monitoring Agents, organizations can: • Measure key network metrics, including jitter, packet loss, and throughput. • Identify and troubleshoot intermittent network issues that are challenging to pinpoint. • Receive alerts regarding any performance degradation, ensuring a timely response. • Collect valuable data for in-depth troubleshooting and analysis, facilitating proactive network management and optimization. Step 3: Measure Network Metrics After deploying the monitoring agents, they continuously exchange synthetic User Datagram Protocol (UDP) traffic, forming a network monitoring session. During this session, the agents measure network performance by evaluating key metrics and conducting network traffic analysis. The metrics used in the analysis include specific parameters, and the results of these measurements are presented in a network response time graph, providing a visual representation of the network's performance characteristics. Monitoring and analyzing these metrics enable organizations to gain valuable insights into network performance, facilitating informed decision-making and convenient network performance troubleshooting. 4. Significance of Monitoring Metrics in Network Troubleshooting 4.1 Provide Network Visibility Monitoring metrics plays a vital role in network troubleshooting by offering network visibility. They enable the identification of performance bottlenecks, configuration problems, and security vulnerabilities that detrimentally affects network performance. These issues can be addressed through targeted troubleshooting efforts, resulting in improved network performance and enhanced end-user experience. Organizations identify and resolve network issues by monitoring metrics, ensuring optimal network functionality and overall business productivity. 4.2 Prevent Network Downtime Effective monitoring metrics are instrumental in preventing network downtime, a costly concern for businesses. Swift identification and resolution of network issues through proactive network performance troubleshooting help minimize downtime, ensuring uninterrupted business operations. By promptly addressing potential problems, network troubleshooting safeguards against lost productivity, revenue, and customer dissatisfaction. Maintaining a proactive approach to monitoring and resolving network issues to enhance network reliability and business continuity. 4.3 Observe Bandwidth Usage Monitoring metrics are essential in network troubleshooting as they enable the observation of bandwidth usage. This allows organizations to detect abnormal or excessive utilization, pinpoint key performance issues and ensure optimal resource allocation. It allows for identifying critical bandwidth-hogging applications or network intrusions, helping experts take immediate action to mitigate risks, safeguard data, and protect the overall network integrity. Additionally, experts can optimize network performance and ensure a seamless user experience for organizations relying on efficient network infrastructure. 5. Overcome Monitoring Challenges in Network Performance Metrics Enterprises seeking to ensure optimal network performance and improve overall business operations must overcome network monitoring obstacles. Effectively monitoring, tracking, and improving network performance requires a strategic combination of skilled personnel, advanced technologies, and well-defined strategies. Failing to address these requirements results in various challenges that hinder the ability to enhance network performance effectively. The challenges that businesses often encounter include managing scalability, handling massive data volumes, achieving real-time monitoring, dealing with multi-vendor environments, addressing network security and privacy concerns, and adapting to evolving network demands. Each obstacle presents unique complexities that require tailored approaches and expert insights. To overcome these challenges, enterprises must invest in comprehensive monitoring tools capable of handling the scalability demands of growing networks. These tools should provide real-time network visibility, robust analytics capabilities, and intelligent data filtering mechanisms to extract meaningful insights from vast network data. Establishing clear monitoring objectives aligned with business goals and defining key performance indicators (KPIs) are essential in effectively addressing network performance challenges. 6. Key Takeaway Monitoring network performance metrics is crucial for assessing the quality of services a computer network provides from an end-user perspective. It involves continuously tracking and analyzing key metrics such as latency, throughput, jitter, packet loss, VOIP quality, and MOS score. Organizations can actively monitor and assess performance, proactively identify intermittent issues, and collect valuable data for in-depth analysis by implementing dedicated network monitoring software and strategically deploying monitoring agents across the network. In addition, it is imperative to emphasize the significance of monitoring metrics in mitigating the potential financial impact of network downtime, enhancing the utilization of available bandwidth resources, and efficiently tackling the complexities inherent in scaling operations, real-time monitoring, diverse vendor ecosystems, security concerns, and the ever-evolving requirements of modern networks.

Read More

Spotlight

COMSovereign Holding Corp.

COMSovereign Holding Corp. (Nasdaq: COMS) is building the path to 5G, Made in the USA, connecting communities with modernized mobile networks of the future, now. Based in Dallas with a new manufacturing facility in Tucson, Arizona, COMSovereign will be the Made In America source for the future of 5G infrastructure.

Related News

30/60-W PoE ICMs Target Networking, Telecom Apps

Power Electronics | August 11, 2019

Bel Magnetic Solutions, a Bel group company involved in the design and manufacture of MagJack integrated connector modules (ICMs), recently introduced the 2x1 1-G 30- and 60-W Power-over-Ethernet (PoE) MagJack ICMs for networking and telecommunication applications. According to the company, the ICMs are compact and durable as they combine two RJ45 Ethernet ports into one magnetic connector that can be used to safely inject 30 or 60 W of power. This makes them suitable for customers who are looking to save board space by stacking RJ45 connectors together, grouping the Ethernet magnetics within the connector and enabling the magnetics to inject power onto data lines. A majority of today's communication equipment offers the capability of providing or accepting PoE. Bel Magnetic Solutions claims their line of ICMs offer smaller, higher density connectors that are capable of this functionality. They support a wide range of 1GBase-T Ethernet applications and can operate in harsh industrial conditions including an industrial operating temperature range of -40 to 85˚C without degrading performance.

Read More

Wireless Communication Systems Estimated to Soar Higher During 2019-2027

Consumer Reports | August 11, 2019

Wireless Communication Systems Market Report by Material, Application, and Geography – Global Forecast to 2023 is a professional and in-depth research report on the world’s major regional market conditions, focusing on the main regions (North America, Europe and Asia-Pacific) and the main countries (United States, Germany, united Kingdom, Japan, South Korea and China). The report firstly introduced the Wireless Communication Systems Market basics: definitions, classifications, applications and market overview; product specifications; manufacturing processes; cost structures, raw materials and so on. Then it analyzed the world’s main region market conditions, including the product price, profit, capacity, production, supply, demand and market growth rate and forecast etc. In the end, the report introduced new project SWOT analysis, investment feasibility analysis, and investment return analysis.

Read More

A10 Networks (NYSE:ATEN) Upgraded to Buy by Zacks Investment Research

Sundance Herald | August 11, 2019

Zacks Investment Research upgraded shares of A10 Networks (NYSE:ATEN) from a hold rating to a buy rating in a research note issued to investors on Wednesday morning, Zacks.com reports. The brokerage currently has $8.00 target price on the communications equipment provider’s stock. According to Zacks, “A10 Networks, Inc. provides software based application networking solutions. Its solutions enable enterprises, service providers, Web giants, and government organizations to enhance, secure, and optimize the performance of their data center applications and networks. The company delivers its solutions on optimized hardware appliances and as virtual appliances across its Thunder Series and AX Series product families. A10 Networks, Inc. is headquartered in San Jose, California. “ Separately, ValuEngine lowered A10 Networks from a buy rating to a hold rating in a research note on Tuesday, August 6th.

Read More

30/60-W PoE ICMs Target Networking, Telecom Apps

Power Electronics | August 11, 2019

Bel Magnetic Solutions, a Bel group company involved in the design and manufacture of MagJack integrated connector modules (ICMs), recently introduced the 2x1 1-G 30- and 60-W Power-over-Ethernet (PoE) MagJack ICMs for networking and telecommunication applications. According to the company, the ICMs are compact and durable as they combine two RJ45 Ethernet ports into one magnetic connector that can be used to safely inject 30 or 60 W of power. This makes them suitable for customers who are looking to save board space by stacking RJ45 connectors together, grouping the Ethernet magnetics within the connector and enabling the magnetics to inject power onto data lines. A majority of today's communication equipment offers the capability of providing or accepting PoE. Bel Magnetic Solutions claims their line of ICMs offer smaller, higher density connectors that are capable of this functionality. They support a wide range of 1GBase-T Ethernet applications and can operate in harsh industrial conditions including an industrial operating temperature range of -40 to 85˚C without degrading performance.

Read More

Wireless Communication Systems Estimated to Soar Higher During 2019-2027

Consumer Reports | August 11, 2019

Wireless Communication Systems Market Report by Material, Application, and Geography – Global Forecast to 2023 is a professional and in-depth research report on the world’s major regional market conditions, focusing on the main regions (North America, Europe and Asia-Pacific) and the main countries (United States, Germany, united Kingdom, Japan, South Korea and China). The report firstly introduced the Wireless Communication Systems Market basics: definitions, classifications, applications and market overview; product specifications; manufacturing processes; cost structures, raw materials and so on. Then it analyzed the world’s main region market conditions, including the product price, profit, capacity, production, supply, demand and market growth rate and forecast etc. In the end, the report introduced new project SWOT analysis, investment feasibility analysis, and investment return analysis.

Read More

A10 Networks (NYSE:ATEN) Upgraded to Buy by Zacks Investment Research

Sundance Herald | August 11, 2019

Zacks Investment Research upgraded shares of A10 Networks (NYSE:ATEN) from a hold rating to a buy rating in a research note issued to investors on Wednesday morning, Zacks.com reports. The brokerage currently has $8.00 target price on the communications equipment provider’s stock. According to Zacks, “A10 Networks, Inc. provides software based application networking solutions. Its solutions enable enterprises, service providers, Web giants, and government organizations to enhance, secure, and optimize the performance of their data center applications and networks. The company delivers its solutions on optimized hardware appliances and as virtual appliances across its Thunder Series and AX Series product families. A10 Networks, Inc. is headquartered in San Jose, California. “ Separately, ValuEngine lowered A10 Networks from a buy rating to a hold rating in a research note on Tuesday, August 6th.

Read More

Events