The Consequences of a Broadband Deployment Report With Flawed Data

The Federal Communications Commission is required by law (under Section 706 of the Telecommunications Act of 1996) to initiate a notice of inquiry and report annually on whether advanced telecommunications capability is being deployed to all Americans in a reasonable and timely fashion. This annual broadband report is incredibly important because the findings and conclusions are designed to help Congress and the FCC develop policies that ensure all Americans have robust broadband access.

Spotlight

Perle Systems

Perle Systems -- Serial to Ethernet, Fiber to Ethernet and Device Networking Experts. Since 1976 Perle has been manufacturer of reliable, full-featured and competitively priced device networking hardware. Sold through a distribution and VAR channel, businesses around the globe have come to trust Perle to design and deliver superior connectivity technology for their mission critical applications. Perle's products include: Serial to Ethernet Converters, Terminal Servers, Console Servers, Device Servers, Ethernet I/O Device Servers, Serial Cards, Fiber Media Converters, Ethernet Copper Extenders and Industrial Ethernet Switches. These extensive product lines are ideal for organizations that need to: establish network connectivity across multiple locations; securely transmit critical and sensitive information; remotely monitor and control networked devices and appliances, and more.

OTHER ARTICLES
Network Management, Network Security

5G Small Cells: The Future of Wireless Networks

Article | July 17, 2023

5G small cells form the backbone of the modern wireless networks. Learn more about this technology is revolutionizing 5G deployment and enabling various use cases across industries in this article. Contents 1 Introduction to 5G Small Cells for Modern Businesses 2 5G Small Cells: Overview 2.1 Characteristics of 5G Small Cells 2.2 How Small Cells Fit into 5G Architecture 3 Benefits of 5G Small Cells for Businesses 3.1 Improved Coverage and Capacity 3.2 Enhanced Network Performance 3.3 Lower Latency 3.4 Cost-effectiveness 4 Use Cases for 5G Small Cells 4.1 Urban Areas 4.2 Rural Areas 4.3 Indoor Environments 5 Conclusion 1 Introduction to 5G Small Cells for Modern Businesses Small cells are low-power radio access nodes that operate in licensed and unlicensed spectrum bands and are typically deployed in areas with high demand for wireless connectivity. They are a vital component of the 5G wireless network architecture and are designed to complement traditional cell towers, providing improved coverage, network capacity, and faster data speeds. Small cells come in several types, including femtocells, picocells, and microcells, and can be deployed according to the use case. 2 5G Small Cells: Overview 2.1 Characteristics of 5G Small Cells 5G small cells are characterized by small form factors and are designed to be compact and discreet for deployment in various settings, such as urban areas, rural areas, indoor environments, and public spaces. In addition, they consume less power than traditional cell towers, making them more energy-efficient. They also operate on high-frequency bands, which enables them to provide faster data speeds and lower latency than traditional cell towers, which makes small cells essential for 5G. The 5G small cell architecture can be deployed in dense networks, providing better coverage and capacity in areas where traditional cell towers may not be able to reach. Also, a 5G small cell antenna can be configured to provide seamless handoffs between cells, ensuring users have a consistent and uninterrupted wireless experience. These characteristics make them ideal for specific 5G use cases, which will be explored further in the article. 2.2 How Small Cells Fit into 5G Architecture Small cells and 5G evolution are closely linked, and this technology is an ideal solution for future wireless networks. They offer greater capacity, coverage, and flexibility than traditional cell towers, allowing them to meet the demands of an increasingly connected world. By operating on high-frequency bands and being deployed in dense networks, small cells in 5G can provide faster data speeds, lower latency, and better coverage than previous generations of wireless networks. Additionally, their small form factor and flexible deployment options allow for use cases like private 5G networks that revolutionize industries. 3 Benefits of 5G Small Cells for Businesses 5G networks will support a massive increase in connected devices, including smartphones, IoT sensors, and other devices. Small cells are critical for achieving the full potential of 5G networks and the exciting new applications and services they will enable. 3.1 Improved Coverage and Capacity 5G small cells offer improved coverage over traditional cell towers in certain situations, particularly in urban areas. Buildings and other obstacles interfere with wireless signals, so the connection quality decreases in areas with such infrastructure. By deploying small cells closer to users, the network can provide better coverage and capacity in these areas. Small cells can also be deployed indoors, providing better coverage and capacity in buildings and other enclosed spaces. This is important due to poor wireless range, signal interference from walls, and other obstacles. By deploying small cells indoors, the network can provide better coverage and capacity in these areas, improving the overall wireless experience for users. 3.2 Enhanced Network Performance The deployment of small cells enables network densification, which allows several devices to connect to the network simultaneously. This can help reduce network congestion and improve overall network performance, particularly in urban areas. They can also be configured to provide seamless handoffs between cells, ensuring that users have a consistent and uninterrupted wireless experience. This is important because users often move between different areas with different coverage levels and capacities, providing a streamlined experience. 3.3 Lower Latency Small cells are designed to operate on high-frequency bands, which enables them to provide faster data speeds and lower latency than prior generations of wireless networks. This is especially important for applications that require real-time communication, such as virtual reality, autonomous vehicles, and remote surgery. By providing faster data speeds and lower latency, small cells can help enhance these applications' performance, providing a better overall user experience. 3.4 Cost-effectiveness Small cells offer a cost-effective alternative to traditional cell towers, particularly in urban areas with high land and real estate costs. By mounting 5G small cell antennas on existing infrastructure, such as lampposts and buildings, deployment costs can be lowered. Additionally, small cells can be deployed in a modular fashion, allowing for targeted and cost-effective expansion based on the required coverage and capacity. This approach avoids large-scale and expensive deployments of new infrastructure. Moreover, small cells can be powered by low-cost, low-power sources like solar panels or batteries, reducing ongoing operational costs. Furthermore, small cells consume less power than traditional cell towers, resulting in lower energy costs. 4 Use Cases for 5G Small Cells 4.1 Urban Areas As discussed previously, small cell radio antennas in 5G can improve networks in dense urban environments, alleviating network congestion and improving data speeds. In addition, by deploying small cells in areas with high user demand, network operators can provide targeted coverage and capacity improvements to specific areas, ensuring that users have fast and reliable connectivity. 4.2 Rural Areas Small cells can be used to extend coverage to underserved or unserved areas by traditional cell towers. They can fill in coverage gaps, providing reliable connectivity to users in rural areas that may not have access to high-quality wireless services. This will enable use cases such as remote workforces in rural areas, smart agriculture, and distance education and training. 4.3 Indoor Environments Traditional cell towers may not be able to provide reliable connectivity indoors due to physical barriers such as thick walls and ceilings. Small cells can provide targeted coverage and capacity to specific areas, such as conference rooms or shopping malls, where users require high-quality wireless connectivity. In addition to improving range, small cells can help alleviate network congestion and improve data speeds in high-traffic indoor environments. 5 Final Thoughts Small cells are a crucial element in developing and implementing 5G technology. By leveraging a small form factor and high-frequency band usage, small cells facilitate the deployment of 5G networks in a more cost-effective and targeted manner than traditional cell towers. They support a wide range of use cases by providing reliable and high-quality wireless connectivity to a growing number of devices. They will continue to be a critical technology for businesses and organizations seeking to leverage the benefits of 5G technology.

Read More
Wireless, 5G

Meet Delta Sharing: Access more data with secure, open source data sharing

Article | May 18, 2023

If we’ve learned anything in the past year, it’s how much our progress hinges on the ability to share and collaborate around data.During the pandemic, we watched as scientists from around the world raced to develop COVID-19 vaccines in record time. A process that typically takes 10 to 15 years took less than a year—due in part to global collaboration and data sharing. As we transition to the post-COVID-19 era, the “need for speed has never been greater,” says McKinsey. The organizations that will thrive in this new economy will facilitate collaboration, empower individuals and teams, and build impactful partnerships. That success requires shifting from the traditional “don’t share data unless” mindset to a data-sharing mindset grounded in a solid foundation of technology, data-driven culture, and processes.

Read More
Enterprise Mobility, Mobile Infrastructure

Key Network Performance Metrics to Improve Efficiency

Article | June 16, 2023

Discover key network performance metrics to enhance user experience. Explore in-depth latency, throughput, jitter, packet loss, VOIP quality, and MOS score to optimize network performance analysis. Contents 1. Importance of Network Performance Metrics for Performance Analysis 2. Critical Key Network Performance Metrics to Monitor 2.1 Latency 2.2 Throughput 2.3 Jitter 2.4 Packet Loss 2.5 VOIP Qualiy 2.6 MOS Score 3. Steps to Monitor and Measure Network Performance 4. Significance of Monitoring Metrics in Network Troubleshooting 4.1 Provides Network Visibility 4.2 Prevents Network Downtime 4.3 Observe Bandwidth Usage 5. Overcome Monitoring Challenges in Network Performance Metrics 6. Key Takeaway 1. Importance of Network Performance Metrics for Performance Analysis Network performance involves analyzing and evaluating network statistics to determine the quality of services provided by the underlying computer network. Considering various key network metrics, it is primarily measured from the end-users’ perspective. Measuring these metrics, analyzing performance data over time, and understanding the impact on the end-user experience is essential to assess network performance. Measuring network performance requires considering factors such as the location and timing of measurements. For instance, network performance may differ when comparing paths between cities or during periods of varying user demands throughout the day. Therefore, a comprehensive approach to monitoring network performance involves identifying these variables and identifying areas for improvement. Network performance metrics offer valuable insights into any network infrastructure and services. These metrics provide real-time information on potential issues, outages, and errors, allowing one to allocate IT resources efficiently. Understanding end-user demands can create an adaptive network to meet future business needs. However, comprehensive monitoring requires an advanced network monitoring tool to gather, analyze, and interpret data effectively, optimizing network performance. Leveraging relevant metrics can improve network performance, help make informed decisions, enhance network reliability, and deliver a superior user experience. 2. Critical Key Network Performance Metrics to Monitor 2.1 Latency Latency, or network delay, is a crucial performance metric in network monitoring and management. It quantifies the time required to transmit data between destinations. Factors like packet queuing and fiber optic cabling affect network latency. Consistent delays or sudden spikes in latency indicate significant network performance issues. Monitoring and minimizing latency are essential for ensuring optimal network performance. By actively tracking latency, organizations identify and address issues that may cause delays in data transmission, thereby improving overall network responsiveness and minimizing disruptions for end-users. 2.2 Throughput Throughput metrics for network monitoring enable measurement of the data transmission rate across various network segments. Unlike bandwidth, which represents the theoretical data transfer limit, throughput reflects the successful delivery of data packets to their destination. Variations in throughput can occur across different network areas. A low throughput indicates the presence of dropped packets requiring retransmission, and highlights potential performance issues that need attention. Monitoring throughput is crucial for effective network management. By monitoring this performance metric, organizations can gain insights into the actual data transmission rate, ensuring that it aligns with expected levels. 2.3 Jitter Jitter, a key performance metric in network monitoring, refers to the variation in delay between packets, measured as the difference between expected and actual arrival times. It results due to network congestion, routing issues, or other factors, leading to packet loss and degraded application performance. Jitter disrupts the standard sequencing of data packets and can arise due to network congestion or route changes. Monitoring jitter is crucial for identifying and addressing network stability issues and ensuring reliable data transmission. By actively monitoring this performance metric, organizations can address variations in packet delay, mitigating issues that leads to packet loss and enabling proactive troubleshooting. 2.4 Packet Loss Packet loss, a performance management network monitoring metric, represents the number of data packets lost during transmission. It directly affects end-user services, leading to unfulfilled data requests and potential disruptions. Packet loss can arise from various factors, including software problems, network congestion, or router performance issues. Monitoring the entire process precisely to detect and address packet loss, ensures reliable data transmission and optimal network performance. Monitoring packet loss with the right network monitoring software enables timely troubleshooting and optimization of network infrastructure, ultimately enhancing overall network reliability and performance. 2.5 VOIP Quality VoIP (Voice over Internet Protocol) quality is a crucial network performance metric. It refers to the overall performance of a VoIP system in delivering clear and reliable voice communications over the Internet, replacing traditional phone lines. Factors influencing VoIP quality include network bandwidth, latency, packet loss, jitter, and the quality of end-user devices. Monitoring VoIP quality ensures optimal system functionality and high-quality voice communications. Key performance indicators (KPIs) such as mean opinion score (MOS), jitter, latency, packet loss, and call completion rates are utilized to assess and optimize VoIP quality. 2.6 MOS Score Mean opinion score (MOS) is a vital performance metric in network monitoring, rating the perceived quality of a voice call on a scale of 1 to 5. It is a standardized measurement developed by the ITU, an international agency focused on enhancing communication networks. Initially designed for traditional voice calls, the MOS has been adapted to evaluate Voice over IP (VoIP) calls. The MOS score considers various factors, including the specific codec employed for the VoIP call, providing a comprehensive assessment of voice calls quality in network monitoring. 3. Steps to Monitor and Measure Network Performance Step 1: Deploy a Software for Network Monitoring To effectively measure network performance, deploying dedicated network monitoring software is crucial. While temporary tools like traceroutes and pings can provide insights into ongoing problems, they are insufficient for troubleshooting intermittent network issues. Relying on periodic tools for intermittent issues is reliant on chance, as it may only detect problems when they occur during tool usage. By implementing comprehensive network monitoring software, one can proactively monitor and analyze network metrics, historical data, and performance, allowing for timely detection and resolution of both ongoing and intermittent network issues. Step 2: Distribute Monitoring Agents For comprehensive network performance measurement, businesses must distribute monitoring agents strategically across key network locations. These specialized software agents continuously monitor network performance using synthetic traffic, simulating and assessing the end-user perspective. By distributing Monitoring Agents, organizations can: • Measure key network metrics, including jitter, packet loss, and throughput. • Identify and troubleshoot intermittent network issues that are challenging to pinpoint. • Receive alerts regarding any performance degradation, ensuring a timely response. • Collect valuable data for in-depth troubleshooting and analysis, facilitating proactive network management and optimization. Step 3: Measure Network Metrics After deploying the monitoring agents, they continuously exchange synthetic User Datagram Protocol (UDP) traffic, forming a network monitoring session. During this session, the agents measure network performance by evaluating key metrics and conducting network traffic analysis. The metrics used in the analysis include specific parameters, and the results of these measurements are presented in a network response time graph, providing a visual representation of the network's performance characteristics. Monitoring and analyzing these metrics enable organizations to gain valuable insights into network performance, facilitating informed decision-making and convenient network performance troubleshooting. 4. Significance of Monitoring Metrics in Network Troubleshooting 4.1 Provide Network Visibility Monitoring metrics plays a vital role in network troubleshooting by offering network visibility. They enable the identification of performance bottlenecks, configuration problems, and security vulnerabilities that detrimentally affects network performance. These issues can be addressed through targeted troubleshooting efforts, resulting in improved network performance and enhanced end-user experience. Organizations identify and resolve network issues by monitoring metrics, ensuring optimal network functionality and overall business productivity. 4.2 Prevent Network Downtime Effective monitoring metrics are instrumental in preventing network downtime, a costly concern for businesses. Swift identification and resolution of network issues through proactive network performance troubleshooting help minimize downtime, ensuring uninterrupted business operations. By promptly addressing potential problems, network troubleshooting safeguards against lost productivity, revenue, and customer dissatisfaction. Maintaining a proactive approach to monitoring and resolving network issues to enhance network reliability and business continuity. 4.3 Observe Bandwidth Usage Monitoring metrics are essential in network troubleshooting as they enable the observation of bandwidth usage. This allows organizations to detect abnormal or excessive utilization, pinpoint key performance issues and ensure optimal resource allocation. It allows for identifying critical bandwidth-hogging applications or network intrusions, helping experts take immediate action to mitigate risks, safeguard data, and protect the overall network integrity. Additionally, experts can optimize network performance and ensure a seamless user experience for organizations relying on efficient network infrastructure. 5. Overcome Monitoring Challenges in Network Performance Metrics Enterprises seeking to ensure optimal network performance and improve overall business operations must overcome network monitoring obstacles. Effectively monitoring, tracking, and improving network performance requires a strategic combination of skilled personnel, advanced technologies, and well-defined strategies. Failing to address these requirements results in various challenges that hinder the ability to enhance network performance effectively. The challenges that businesses often encounter include managing scalability, handling massive data volumes, achieving real-time monitoring, dealing with multi-vendor environments, addressing network security and privacy concerns, and adapting to evolving network demands. Each obstacle presents unique complexities that require tailored approaches and expert insights. To overcome these challenges, enterprises must invest in comprehensive monitoring tools capable of handling the scalability demands of growing networks. These tools should provide real-time network visibility, robust analytics capabilities, and intelligent data filtering mechanisms to extract meaningful insights from vast network data. Establishing clear monitoring objectives aligned with business goals and defining key performance indicators (KPIs) are essential in effectively addressing network performance challenges. 6. Key Takeaway Monitoring network performance metrics is crucial for assessing the quality of services a computer network provides from an end-user perspective. It involves continuously tracking and analyzing key metrics such as latency, throughput, jitter, packet loss, VOIP quality, and MOS score. Organizations can actively monitor and assess performance, proactively identify intermittent issues, and collect valuable data for in-depth analysis by implementing dedicated network monitoring software and strategically deploying monitoring agents across the network. In addition, it is imperative to emphasize the significance of monitoring metrics in mitigating the potential financial impact of network downtime, enhancing the utilization of available bandwidth resources, and efficiently tackling the complexities inherent in scaling operations, real-time monitoring, diverse vendor ecosystems, security concerns, and the ever-evolving requirements of modern networks.

Read More
Network Infrastructure

Cisco SD-WAN – the easiest way to connect private links to the cloud from your data center or even branches

Article | June 7, 2022

Applications and workloads have been moving to the cloud for some time. This transition has been putting a lot of pressure on IT organizations to support the trend by extending their networks to support cloud connectivity. Cisco SD-WAN enables your hybrid connectivity to the cloud We at Cisco have innovated on multiple fronts to help our customers with this transition by providing a deep level of integration with many of the leading cloud service providers (CSPs), including Amazon Web Services (AWS), Microsoft Azure, and Google Cloud. Here, we highlight one key aspect of this innovation that allows private cloud links to be available as part of the SD-WAN network, enabling hybrid connectivity to the cloud and multicloud. Now our customers can benefit from all the rich features that our Cisco SD-WAN solution offers including application-aware routing, intent-based path selection, and security policy enforcement. Private direct cloud connectivity to CSPs such as AWS Direct Cloud Connect, Google Cloud Interconnect, and Azure ExpressRoute are becoming popular lately, as they provide customers with optimal connectivity similar to what MPLS did in the past, but in a more agile and on-demand fashion. The only problem is those services are normally acquired separately and customers must determine how to manage them as part of a larger WAN solution including configuration, monitoring, and so on. The on-demand nature of these circuits provides customers with major savings, but also turns automation into a key requirement for management. Enter Cisco SD-WAN release 20.6 Beginning with Cisco SD-WAN release 20.6, a Cisco SD-WAN customer may use Cloud OnRamp for Mutlicloud to automate and simplify cloud connectivity across private and public transports. What is great is this task, that used to require hours and days to setup, now only takes minutes as outlined by the following integration documents for AWS, Azure and Google Cloud respectively: Configure AWS Direct Connect as a Transport with SD-WAN in a Click Configure Azure Express Route as Transport with SD-WAN in a Click Configure Google Cloud Interconnect as a Transport with Cisco SD-WAN in a Click Once a customer implements such connectivity, they will have the ability to steer any type of traffic through it with a customizable and flexible SD-WAN policy. This solution also allows customers to eliminate some limitations imposed on them by the CSPs, such as restricting the number of prefixes advertised via BGP over private links, thus providing better scalability and control. For customers who already use Cisco SD-WAN Cloud Interconnect at middle-mile POPs, such as with Equinix or Megaport, rolling out this solution as a test can be extremely simple given the automation discussed above. The best way to find out how easy this solution is, is to try it.

Read More

Spotlight

Perle Systems

Perle Systems -- Serial to Ethernet, Fiber to Ethernet and Device Networking Experts. Since 1976 Perle has been manufacturer of reliable, full-featured and competitively priced device networking hardware. Sold through a distribution and VAR channel, businesses around the globe have come to trust Perle to design and deliver superior connectivity technology for their mission critical applications. Perle's products include: Serial to Ethernet Converters, Terminal Servers, Console Servers, Device Servers, Ethernet I/O Device Servers, Serial Cards, Fiber Media Converters, Ethernet Copper Extenders and Industrial Ethernet Switches. These extensive product lines are ideal for organizations that need to: establish network connectivity across multiple locations; securely transmit critical and sensitive information; remotely monitor and control networked devices and appliances, and more.

Related News

Enterprise Mobility,Mobile OS

MATRIXX Software’s Digital Commerce Platform Available in Microsoft’s Azure Marketplace

MATRIXX | January 27, 2023

5G monetization solutions leader, MATRIXX software, yesterday announced that the MATRIXX Digital Commerce Platform (DCP) is now available on the Microsoft Azure Marketplace, an online store providing software and services to be used with the Azure cloud computing platform. MATRIXX DCP, a cloud native monetization platform gives Communications Services Providers (CSPs) a wide range of monetization options, making it simpler to take advantage of 5G revenue prospects. By installing MATRIXX DCP on Azure Kubernetes Service (AKS), CSPs may take full advantage of the reliable Azure cloud platform's benefits for the vital goal of monetizing new and cutting-edge services. With a no-code, cloud-native, real-time platform, MATRIXX DCP, a 3GPP-compliant converged charging solution, enables telcos to monetize at web scale. With MATRIXX DCP, operators can scale swiftly in the 5G era and beyond, create differentiated digital consumer experiences, and drive innovation. Marc Price, CTO at MATRIXX Software, said, “Multi-cloud deployments are increasingly important for operators around the world, and are defining the next era of telecommunications.” He further added, “MATRIXX empowers our customers to have access to advanced monetization capabilities, wherever they choose to deploy. Microsoft is a trusted cloud ecosystem partner for CSPs, and with MATRIXX DCP in the Microsoft Azure Marketplace, telcos can easily procure and deploy monetization capabilities for emerging services.” About MATRIXX Software Matrix Software provides converged charging and commerce solutions. It’s cloud-native Digital Commerce Platform offers mission-critical, network-grade software that opens new prospects for network monetization. MATRIXX gives service providers the agility they need to quickly build, deploy, and monetize new products and services because to its no-code configuration features. Many of the world’s top IoT players, network infrastructure providers, and communications firms run on the MATRIXX platform. Utilizing business innovation and on-demand customer experience through MATRIXX enables businesses to compete better, produce new revenue, and pursue growth possibilities across markets and verticals.

Read More

Wan Technologies,Wireless,5G

AMD and Viettel Collaborate on 5G Mobile Network Expansion

AMD | December 05, 2022

AMD and Viettel High Tech (Member of Viettel Group) today announced the successful completion of a 5G mobile network field trial deployment conducted by Viettel and powered by AMD Xilinx Zynq™ UltraScale+™ MPSoC devices. As the largest telecom operator in Vietnam serving more than 130 million mobile customers, Viettel High Tech has a rich history of using AMD radio technology with prior 4G deployments and is now accelerating new networks via new 5G remote radio heads. Designed to meet the growing capacity and performance requirements of mobile users globally, the Viettel 5G mobile network is expected to be completed by the end of 2022. AMD is the exclusive radio unit silicon supplier for Viettel’s indigenous 5G radio development. After the successful completion of the first field trial, Zynq MPSoCs are now set to be extended to an additional 300 Macro 8T8R base stations and 900 5G 8T8R Macro radios. The Zynq UltraScale+ MPSoC was also chosen by Viettel for its first-generation 64T64R Massive MIMO radio which is currently being optimized for field trials. Viettel is developing the next generation of radios to also include Zynq UltraScale+ RFSoC devices, to provide industry-leading integration and higher performance. “Viettel is committed to advancing mobile technology leadership by working closely with AMD to incorporate its adaptable SoC technology into our new generation of 5G networks. Going from VHT's history of making 4G BTS, this decision to scale for the growing demands of 5G was based on evaluating various factors including flexibility, simplification, design stability and the experience of engineers.” Nguyen Vu Ha, general director of Viettel High Tech “5G provides new opportunities to offer higher levels of performance, power efficiency and new services along with increased reliability required to meet the growing data demands of cellular networks,” said Yousef Khalilollahi, corporate vice president of APAC sales, Adaptive and Embedded Computing Group, AMD. “We are proud of our close collaboration with Viettel and remain focused on enabling its mobile network to deliver the optimal end-user experience as well as the flexibility to evolve and grow as Viettel’s user base and required bandwidth continue to increase globally.” About Viettel High Tech As the R&D arm of Viettel Group, Viettel High Tech develops full 5G network architecture including 5 layers: Service/App layers, Core layers, Transportation layers, Access layers, Devices; makes Vietnam one of the few countries that can produce 5G equipment. Collaboration with the leading partners is VHT’s strategy. With the desire to experiment, exchange knowledge, further develop diverse fields, VHT is moving to accompany the international high-tech community. About AMD For more than 50 years AMD has driven innovation in high-performance computing, graphics and visualization technologies. Billions of people, leading Fortune 500 businesses and cutting-edge scientific research institutions around the world rely on AMD technology daily to improve how they live, work and play. AMD employees are focused on building leadership high-performance and adaptive products that push the boundaries of what is possible.

Read More

Network Infrastructure,Network Management,Wan Technologies

Verizon continues to deploy 5G Ultra Wideband faster than expected

Verizon | December 06, 2022

Verizon now covers more than 175 million people with their ultra fast, ultra reliable 5G Ultra Wideband service, and will offer nationwide 5G Ultra Wideband in Q1 2023. The ongoing C-Band rollout is a full 13 months ahead of the original schedule, and continues to accelerate. Less than 21 months after announcing the results of the FCC’s C-band auction and after securing early access to an additional 30 markets this year, Verizon accelerated its build plan and surpassed its goal of reaching 175 million people covered by the end of 2022, a month ahead of schedule. “Our customers don’t stand still and neither does our network. Today, more than one out of every two Americans now have access to 5G Ultra Wideband. We know our customers rely on our service every day and we work for them – continuously enhancing, expanding and improving our wireless network. And as proud as I am to have crossed this milestone, I am equally proud of the way we are building our network – with the most advanced technologies, industry leading security, a robust fiber underpinning and a robust and varied spectrum portfolio. We are building this right. We are building this as a platform for innovation for years to come.” Hans Vestberg, Chairman and CEO of Verizon. Verizon’s 5G Ultra Wideband brings power and performance comparable to a wired broadband internet connection to customers’ pockets. With download speeds up to one gigabit per second and the capacity to support data-heavy actions, 5G Ultra Wideband frees people up to do things on the go that many could only do before when connected to their home internet service. This includes everything from downloading huge documents and seamlessly streaming movies in HD audio and video, to playing console quality games and conducting video chats, video conferencing and FaceTime calls with clear sound and video. Verizon customers have much more to look forward to Verizon will continue to build out its 5G Ultra Wideband network using C-band spectrum providing service for millions more customers in the coming months, but Verizon’s engineers are not losing sight of the other critical components that will give customers the most reliable, secure, and robust experience possible on the Verizon network. In addition to providing greater coverage, especially in rural and suburban areas, Verizon will also enhance capacity by activating 100 MHz of C-Band spectrum in many markets, a significant step up from the 60 MHz of spectrum available when deployment first began. Once all of its licensed spectrum is made available, Verizon will have up to 200 MHz of C-Band spectrum deployed in many markets, which will provide exceptional speed and capacity. Complementing the wide coverage of Verizon’s premier C-Band spectrum, Verizon will continue deploying 5G on mmWave spectrum which provides for exponential capacity in areas with significantly dense populations such as venues, stadiums, arenas, airports, major metro areas, office complexes and more. mmWave will also continue to be used for private network deployments when enterprise customers need the fastest, most robust 5G service available for their enterprise applications from wireless manufacturing solutions to connected vehicles to remote healthcare and more. In addition to making 5G more accessible to more people, Verizon will continue focusing on building out the advanced technologies that provide increased security, reliability and customized experiences for customers. Those advancements include fully deploying the 5G core with Verizon’s proprietary cloud platform built specifically for telco workloads, advancing the fiber network to handle exponential increases in data traffic, continuing massive virtualization of the network to add programmability and flexibility into the network, using artificial intelligence to drive reliability and performance, continuing to develop edge computing capabilities to drive down latency, and continuing to advance antenna configurations to drive speed and efficiency.

Read More

Enterprise Mobility,Mobile OS

MATRIXX Software’s Digital Commerce Platform Available in Microsoft’s Azure Marketplace

MATRIXX | January 27, 2023

5G monetization solutions leader, MATRIXX software, yesterday announced that the MATRIXX Digital Commerce Platform (DCP) is now available on the Microsoft Azure Marketplace, an online store providing software and services to be used with the Azure cloud computing platform. MATRIXX DCP, a cloud native monetization platform gives Communications Services Providers (CSPs) a wide range of monetization options, making it simpler to take advantage of 5G revenue prospects. By installing MATRIXX DCP on Azure Kubernetes Service (AKS), CSPs may take full advantage of the reliable Azure cloud platform's benefits for the vital goal of monetizing new and cutting-edge services. With a no-code, cloud-native, real-time platform, MATRIXX DCP, a 3GPP-compliant converged charging solution, enables telcos to monetize at web scale. With MATRIXX DCP, operators can scale swiftly in the 5G era and beyond, create differentiated digital consumer experiences, and drive innovation. Marc Price, CTO at MATRIXX Software, said, “Multi-cloud deployments are increasingly important for operators around the world, and are defining the next era of telecommunications.” He further added, “MATRIXX empowers our customers to have access to advanced monetization capabilities, wherever they choose to deploy. Microsoft is a trusted cloud ecosystem partner for CSPs, and with MATRIXX DCP in the Microsoft Azure Marketplace, telcos can easily procure and deploy monetization capabilities for emerging services.” About MATRIXX Software Matrix Software provides converged charging and commerce solutions. It’s cloud-native Digital Commerce Platform offers mission-critical, network-grade software that opens new prospects for network monetization. MATRIXX gives service providers the agility they need to quickly build, deploy, and monetize new products and services because to its no-code configuration features. Many of the world’s top IoT players, network infrastructure providers, and communications firms run on the MATRIXX platform. Utilizing business innovation and on-demand customer experience through MATRIXX enables businesses to compete better, produce new revenue, and pursue growth possibilities across markets and verticals.

Read More

Wan Technologies,Wireless,5G

AMD and Viettel Collaborate on 5G Mobile Network Expansion

AMD | December 05, 2022

AMD and Viettel High Tech (Member of Viettel Group) today announced the successful completion of a 5G mobile network field trial deployment conducted by Viettel and powered by AMD Xilinx Zynq™ UltraScale+™ MPSoC devices. As the largest telecom operator in Vietnam serving more than 130 million mobile customers, Viettel High Tech has a rich history of using AMD radio technology with prior 4G deployments and is now accelerating new networks via new 5G remote radio heads. Designed to meet the growing capacity and performance requirements of mobile users globally, the Viettel 5G mobile network is expected to be completed by the end of 2022. AMD is the exclusive radio unit silicon supplier for Viettel’s indigenous 5G radio development. After the successful completion of the first field trial, Zynq MPSoCs are now set to be extended to an additional 300 Macro 8T8R base stations and 900 5G 8T8R Macro radios. The Zynq UltraScale+ MPSoC was also chosen by Viettel for its first-generation 64T64R Massive MIMO radio which is currently being optimized for field trials. Viettel is developing the next generation of radios to also include Zynq UltraScale+ RFSoC devices, to provide industry-leading integration and higher performance. “Viettel is committed to advancing mobile technology leadership by working closely with AMD to incorporate its adaptable SoC technology into our new generation of 5G networks. Going from VHT's history of making 4G BTS, this decision to scale for the growing demands of 5G was based on evaluating various factors including flexibility, simplification, design stability and the experience of engineers.” Nguyen Vu Ha, general director of Viettel High Tech “5G provides new opportunities to offer higher levels of performance, power efficiency and new services along with increased reliability required to meet the growing data demands of cellular networks,” said Yousef Khalilollahi, corporate vice president of APAC sales, Adaptive and Embedded Computing Group, AMD. “We are proud of our close collaboration with Viettel and remain focused on enabling its mobile network to deliver the optimal end-user experience as well as the flexibility to evolve and grow as Viettel’s user base and required bandwidth continue to increase globally.” About Viettel High Tech As the R&D arm of Viettel Group, Viettel High Tech develops full 5G network architecture including 5 layers: Service/App layers, Core layers, Transportation layers, Access layers, Devices; makes Vietnam one of the few countries that can produce 5G equipment. Collaboration with the leading partners is VHT’s strategy. With the desire to experiment, exchange knowledge, further develop diverse fields, VHT is moving to accompany the international high-tech community. About AMD For more than 50 years AMD has driven innovation in high-performance computing, graphics and visualization technologies. Billions of people, leading Fortune 500 businesses and cutting-edge scientific research institutions around the world rely on AMD technology daily to improve how they live, work and play. AMD employees are focused on building leadership high-performance and adaptive products that push the boundaries of what is possible.

Read More

Network Infrastructure,Network Management,Wan Technologies

Verizon continues to deploy 5G Ultra Wideband faster than expected

Verizon | December 06, 2022

Verizon now covers more than 175 million people with their ultra fast, ultra reliable 5G Ultra Wideband service, and will offer nationwide 5G Ultra Wideband in Q1 2023. The ongoing C-Band rollout is a full 13 months ahead of the original schedule, and continues to accelerate. Less than 21 months after announcing the results of the FCC’s C-band auction and after securing early access to an additional 30 markets this year, Verizon accelerated its build plan and surpassed its goal of reaching 175 million people covered by the end of 2022, a month ahead of schedule. “Our customers don’t stand still and neither does our network. Today, more than one out of every two Americans now have access to 5G Ultra Wideband. We know our customers rely on our service every day and we work for them – continuously enhancing, expanding and improving our wireless network. And as proud as I am to have crossed this milestone, I am equally proud of the way we are building our network – with the most advanced technologies, industry leading security, a robust fiber underpinning and a robust and varied spectrum portfolio. We are building this right. We are building this as a platform for innovation for years to come.” Hans Vestberg, Chairman and CEO of Verizon. Verizon’s 5G Ultra Wideband brings power and performance comparable to a wired broadband internet connection to customers’ pockets. With download speeds up to one gigabit per second and the capacity to support data-heavy actions, 5G Ultra Wideband frees people up to do things on the go that many could only do before when connected to their home internet service. This includes everything from downloading huge documents and seamlessly streaming movies in HD audio and video, to playing console quality games and conducting video chats, video conferencing and FaceTime calls with clear sound and video. Verizon customers have much more to look forward to Verizon will continue to build out its 5G Ultra Wideband network using C-band spectrum providing service for millions more customers in the coming months, but Verizon’s engineers are not losing sight of the other critical components that will give customers the most reliable, secure, and robust experience possible on the Verizon network. In addition to providing greater coverage, especially in rural and suburban areas, Verizon will also enhance capacity by activating 100 MHz of C-Band spectrum in many markets, a significant step up from the 60 MHz of spectrum available when deployment first began. Once all of its licensed spectrum is made available, Verizon will have up to 200 MHz of C-Band spectrum deployed in many markets, which will provide exceptional speed and capacity. Complementing the wide coverage of Verizon’s premier C-Band spectrum, Verizon will continue deploying 5G on mmWave spectrum which provides for exponential capacity in areas with significantly dense populations such as venues, stadiums, arenas, airports, major metro areas, office complexes and more. mmWave will also continue to be used for private network deployments when enterprise customers need the fastest, most robust 5G service available for their enterprise applications from wireless manufacturing solutions to connected vehicles to remote healthcare and more. In addition to making 5G more accessible to more people, Verizon will continue focusing on building out the advanced technologies that provide increased security, reliability and customized experiences for customers. Those advancements include fully deploying the 5G core with Verizon’s proprietary cloud platform built specifically for telco workloads, advancing the fiber network to handle exponential increases in data traffic, continuing massive virtualization of the network to add programmability and flexibility into the network, using artificial intelligence to drive reliability and performance, continuing to develop edge computing capabilities to drive down latency, and continuing to advance antenna configurations to drive speed and efficiency.

Read More

Events