Enterprise Mobility, Mobile Infrastructure
Article | June 16, 2023
Uncover the future of network monitoring at computer networking conferences. Explore insights, collaborations, and growth opportunities to harness the power of secured network infrastructures.
Network monitoring is a critical aspect of the ever-evolving networking industry; helping ensure efficient and secure operation. It involves the continuous surveillance, analysis, and management of network infrastructure, performance, and security. To stay abreast of the latest developments and advancements in this field, industry executives and managers must attend the upcoming network monitoring conferences scheduled between June and September 2023. The events provide a crucial platform for professionals to gain in-depth insights into emerging trends, innovative technologies, and best practices in network monitoring. The computer network monitoring conferences aims to address challenges businesses face with IT infrastructure, operations and cloud. The conferences are broken up into several tracks, each with a different area of focus. The agenda and key speakers offer more opportunities to learn and discover knowledge and improve the network monitoring operations.
Top 7 Network Monitoring Conferences of 2023
1.TMA Conference 2023
June 26-30, 2023 | Naples (Italy)
The 7th edition of Network Traffic Measurement and Analysis Conference will offer a significant opportunity for leaders in the networking industry. Organized by the prestigious University of Naples Federico II, the TMA Conference 2023 provides a platform for presenting cutting-edge research and controversial work in network measurements. One of the Technical Program Committee (TPC) chairs for this year's conference is Johanna Ullrich, a renowned researcher at SBA Research and the Head of the Networks and Critical Infrastructures Security Research Group. With her expertise and insights, Ullrich will share insights with a compelling keynote speech that will offer valuable knowledge to attendees. Moreover, the event boasts technical sponsorship from reputable organizations such as IFIP, IFIP TC6-WG6.6, IEEE, and IEEE ComSoc, further solidifying its significance in the networking industry.
2.IEEE International Black Sea Conference on Communications and Networking
July 4-7, 2023 | Istanbul (Turkey)
A significant event for networking industry leaders, IEEE BlackSeaCom 2023, offers grants to participants who have registered and co-authored accepted papers, fostering engagement and recognition within the conference networks. The special session on machine learning and intelligent algorithms for emerging wireless communications brings forth groundbreaking research. Esteemed speakers like Henning Schulzrinne, Melike Erol-Kantarci, Bülent Kaytaz, and BASIL MANOUSSOS to offer valuable insights about network monitoring in the event. Attending this network monitoring conference will allow industry leaders to network, collaborate, and stay updated on the latest advancements in event monitoring and network monitoring events.
3.IEEE International Symposium on Local and Metropolitan Area Networks
July 10-11, 2023 | London (UK)
IEEE LANMAN 2023 provides a robust platform for industry leaders by bringing together experts to discuss the latest technical advances in local and metropolitan area networking. With a focus on theory and experimentation, LANMAN 2023 invites advanced papers pushing network monitoring events' boundaries. The keynote speakers, including Tommaso Melodia and William Lincoln Smith, are to delve into topics like open RAN systems, edge computing, routing, and network functions. Attending LANMAN 2023 allows industry leaders to expand their conference networks, gain valuable insights, and stay at the forefront of network events and management, empowering them to drive innovation and enhance their network monitoring strategies.
4.International Conference on Computer Communications and Networks (ICCCN 2023)
July 24-26 2024 | Hawaii (US)
A must-attend event for computer communications and network industry leaders serves as a platform for presenting innovative ideas and fundamental advancements in computer communications and networks. The conference facilitates communication and collaboration among researchers and practitioners, driving scientific and technological innovation to enhance communications and networking. Keynote speakers including, Ness B. Shroff, Puneet Sharma, and Dr. Gene Tsudik will address designing future XG networks, complexities of edge-to-cloud platforms, and compromise/malware detection for low-end devices. Attending ICCCN will help expand network through conferences, gain a deeper understanding, and advance their network monitoring techniques with shared expertise and knowledge.
5.SmartNets 2023
July 25-27, 2023| Istanbul (Turkey)
SmartNets 2023 is a pivotal networking conference aiming to bridge the gap between the physical world and cyberspace by connecting everything. The event will bring together experts and researchers from academia to discuss the challenges and solutions in areas like embedded equipment design, resource-constrained media communications, security, data analysis, and services. The conference will be focusing on future scientific issues, covering topics such as Industry 4.0, smart cities, healthcare systems, big data analytics, edge computing, next-generation networks, and more. SmartNets 2023 will enable leaders to gain access to the latest research findings, address digital transformation challenges, explore wireless communication technologies, and exchange experiences on implementing secure and reliable communication services.
6.IEEE International Mediterranean Conference on Communications and Networking
September 4-7, 2023 | Dubrovnik (Croatia)
IEEE MeditCom is a highly anticipated networking conference that brings together worldwide visionaries from academia, research labs, and industry. The event will focus on addressing the challenges in communications and networking. It will provide a platform for researchers to present their work on various topics, including theoretical and systems research and vertical technologies. By attending IEEE MeditCom, industry leaders in the networking industry will be able to discover the latest advancements and research findings. Furthermore, the conference will offer an opportunity to engage with local IEEE Sections, ComSoc Chapters, and Sister Societies from the Mediterranean region. The presence of distinguished keynote speakers like Gerhard P. Fettweis, Petar Popovski, Jean-Claude Belfiore, Mohamed-Slim Alouini, and Antonia M. Tulino will further enhance the value of this event.
7.Cyber Security Training at SANS Network Security Las Vegas 2023
September 6-11, 2023 | Las Vegas (US)
SANS Network Security 2023 offers industry leaders in the network industry the opportunity to learn valuable real-world cybersecurity skills from experts. The event, both live online and in Las Vegas, will provide interactive training with hands-on labs and the chance to participate in NetWars Tournaments. Attending SANS Network Security will allow professionals to enhance their knowledge, network with peers in real-time, and stay up-to-date with industry trends. With courses aligned with GIAC certifications, attendees can validate their expertise in specialized InfoSec, network monitoring domains and job-specific roles. Jon Gorenflo, a prominent figure in the field, is a keynote speaker at the event, and will be sharing his expertise and on-field experience.
Conclusion
The event listing showcases numerous opportunities for networking businesses to gain a competitive edge. By experiencing these upcoming conferences, industry leaders can tap into the latest research, emerging technologies, and best methods in network monitoring. This invaluable knowledge equips them to make informed decisions, develop innovative solutions, and optimize processes. The conferences allow to connect and enable businesses to explore new avenues, forge strategic alliances, and unlock potential growth opportunities. Ultimately, the comprehensive insights gained from these conferences empower networking businesses to adapt to evolving market dynamics, enhance their capabilities, and thrive in an innovative environment.
Read More
Wireless, 5G
Article | May 18, 2023
The third Annual OCP China Day, organized by the Open Compute Project (OCP) Foundation and hosted by Inspur, will be held on July 27, 2021 in Beijing. It marks another step in the right direction to popularizing open computing across the globe. This year is the tenth anniversary of the open compute project and the theme of OCP China Day is “Open compute for a new decade: Decarbonization, Efficiency, Adoption”.
Omdia has tracked the open computing market in detail for 5 years and over that period we have seen the end-user base expand and adoption take off. We expect 40% of the servers shipped in 2025 to be developed based on open standard, up from 7% in 2016. This is a very significant number, partularly given that our forecast takes into account large scale adoption at only two or three of the hyperscale cloud service providers. Most of the net new deployments are expected to be at tier-2 cloud, communication service providers and enterprises, including the public or government sector.
Read More
Network Infrastructure, Network Management
Article | July 10, 2023
5G small cells form the backbone of the modern wireless networks. Learn more about this technology is revolutionizing 5G deployment and enabling various use cases across industries in this article.
Contents
1 Introduction to 5G Small Cells for Modern Businesses
2 5G Small Cells: Overview
2.1 Characteristics of 5G Small Cells
2.2 How Small Cells Fit into 5G Architecture
3 Benefits of 5G Small Cells for Businesses
3.1 Improved Coverage and Capacity
3.2 Enhanced Network Performance
3.3 Lower Latency
3.4 Cost-effectiveness
4 Use Cases for 5G Small Cells
4.1 Urban Areas
4.2 Rural Areas
4.3 Indoor Environments
5 Conclusion
1 Introduction to 5G Small Cells for Modern Businesses
Small cells are low-power radio access nodes that operate in licensed and unlicensed spectrum bands and are typically deployed in areas with high demand for wireless connectivity. They are a vital component of the 5G wireless network architecture and are designed to complement traditional cell towers, providing improved coverage, network capacity, and faster data speeds. Small cells come in several types, including femtocells, picocells, and microcells, and can be deployed according to the use case.
2 5G Small Cells: Overview
2.1 Characteristics of 5G Small Cells
5G small cells are characterized by small form factors and are designed to be compact and discreet for deployment in various settings, such as urban areas, rural areas, indoor environments, and public spaces. In addition, they consume less power than traditional cell towers, making them more energy-efficient. They also operate on high-frequency bands, which enables them to provide faster data speeds and lower latency than traditional cell towers, which makes small cells essential for 5G.
The 5G small cell architecture can be deployed in dense networks, providing better coverage and capacity in areas where traditional cell towers may not be able to reach. Also, a 5G small cell antenna can be configured to provide seamless handoffs between cells, ensuring users have a consistent and uninterrupted wireless experience. These characteristics make them ideal for specific 5G use cases, which will be explored further in the article.
2.2 How Small Cells Fit into 5G Architecture
Small cells and 5G evolution are closely linked, and this technology is an ideal solution for future wireless networks. They offer greater capacity, coverage, and flexibility than traditional cell towers, allowing them to meet the demands of an increasingly connected world.
By operating on high-frequency bands and being deployed in dense networks, small cells in 5G can provide faster data speeds, lower latency, and better coverage than previous generations of wireless networks. Additionally, their small form factor and flexible deployment options allow for use cases like private 5G networks that revolutionize industries.
3 Benefits of 5G Small Cells for Businesses
5G networks will support a massive increase in connected devices, including smartphones, IoT sensors, and other devices. Small cells are critical for achieving the full potential of 5G networks and the exciting new applications and services they will enable.
3.1 Improved Coverage and Capacity
5G small cells offer improved coverage over traditional cell towers in certain situations, particularly in urban areas. Buildings and other obstacles interfere with wireless signals, so the connection quality decreases in areas with such infrastructure. By deploying small cells closer to users, the network can provide better coverage and capacity in these areas.
Small cells can also be deployed indoors, providing better coverage and capacity in buildings and other enclosed spaces. This is important due to poor wireless range, signal interference from walls, and other obstacles. By deploying small cells indoors, the network can provide better coverage and capacity in these areas, improving the overall wireless experience for users.
3.2 Enhanced Network Performance
The deployment of small cells enables network densification, which allows several devices to connect to the network simultaneously. This can help reduce network congestion and improve overall network performance, particularly in urban areas. They can also be configured to provide seamless handoffs between cells, ensuring that users have a consistent and uninterrupted wireless experience. This is important because users often move between different areas with different coverage levels and capacities, providing a streamlined experience.
3.3 Lower Latency
Small cells are designed to operate on high-frequency bands, which enables them to provide faster data speeds and lower latency than prior generations of wireless networks. This is especially important for applications that require real-time communication, such as virtual reality, autonomous vehicles, and remote surgery. By providing faster data speeds and lower latency, small cells can help enhance these applications' performance, providing a better overall user experience.
3.4 Cost-effectiveness
Small cells offer a cost-effective alternative to traditional cell towers, particularly in urban areas with high land and real estate costs. By mounting 5G small cell antennas on existing infrastructure, such as lampposts and buildings, deployment costs can be lowered. Additionally, small cells can be deployed in a modular fashion, allowing for targeted and cost-effective expansion based on the required coverage and capacity. This approach avoids large-scale and expensive deployments of new infrastructure. Moreover, small cells can be powered by low-cost, low-power sources like solar panels or batteries, reducing ongoing operational costs. Furthermore, small cells consume less power than traditional cell towers, resulting in lower energy costs.
4 Use Cases for 5G Small Cells
4.1 Urban Areas
As discussed previously, small cell radio antennas in 5G can improve networks in dense urban environments, alleviating network congestion and improving data speeds. In addition, by deploying small cells in areas with high user demand, network operators can provide targeted coverage and capacity improvements to specific areas, ensuring that users have fast and reliable connectivity.
4.2 Rural Areas
Small cells can be used to extend coverage to underserved or unserved areas by traditional cell towers. They can fill in coverage gaps, providing reliable connectivity to users in rural areas that may not have access to high-quality wireless services. This will enable use cases such as remote workforces in rural areas, smart agriculture, and distance education and training.
4.3 Indoor Environments
Traditional cell towers may not be able to provide reliable connectivity indoors due to physical barriers such as thick walls and ceilings. Small cells can provide targeted coverage and capacity to specific areas, such as conference rooms or shopping malls, where users require high-quality wireless connectivity. In addition to improving range, small cells can help alleviate network congestion and improve data speeds in high-traffic indoor environments.
5 Final Thoughts
Small cells are a crucial element in developing and implementing 5G technology. By leveraging a small form factor and high-frequency band usage, small cells facilitate the deployment of 5G networks in a more cost-effective and targeted manner than traditional cell towers. They support a wide range of use cases by providing reliable and high-quality wireless connectivity to a growing number of devices. They will continue to be a critical technology for businesses and organizations seeking to leverage the benefits of 5G technology.
Read More
5G
Article | May 18, 2023
5G trends are shaping the future of various technologies, from the Internet of Things to Virtual Reality. Learn more about the top trends in 5G to stay ahead of the competition in this sector.
Contents
1 The Value of 5G for Businesses
2 5G Trends to Watch in 2023
2.1 Shift to Standalone 5G
2.2 Edge Computing for IoT
2.3 Adoption of Private 5G Networks
2.4 General Availability of 5G
2.5 Partnerships for Rapid Deployments
3 Conclusion
1 The Value of 5G for Businesses
The fifth-generation network technology, or 5G, promises to revolutionize the way businesses communicate and operate. It offers lower latency, faster data transfer speeds, more robust security, and new and enhanced experiences. These capabilities enable 5G to support high-quality video conferencing, real-time collaboration, immersive virtual experiences, and more. By investing in 5G, businesses can stay competitive and meet the evolving needs of their employees and customers. With the growing adoption and use cases of this technology, keeping up with the technology trends in 5G is essential for staying ahead in today's business landscape.
2 5G Trends to Watch in 2023
2.1 Shift to Standalone 5G
The rapid deployment of 5G across the world has been made possible due to the existence of an already-established 4G infrastructure. This has allowed operators to concentrate on developing the radio access network components while relying on 4G networks as a failsafe. This approach has enabled operators to deploy 5G networks at a faster pace, thereby allowing the benefits of this technology trend to reach a wider audience.
The integration of a 5G core and radio forms the backbone of 5G infrastructure, enabling the 5G stand-alone network to achieve its full potential. Wireless providers have been actively promoting the key features of 5G, such as ultra-low latency and complete network slicing, which are exclusively available through the stand-alone version of this advanced technology.
By utilizing this emerging technology, businesses can unlock an entirely new level of performance, allowing them to deliver innovative and immersive services to their end-users. Stand-alone 5G is also a necessity for certain unique use cases, and many 5G trends in 2023 will rely on its capabilities. It is essential for businesses to understand the benefits of this advanced technology and adopt it to remain competitive in the ever-evolving digital landscape.
2.2 Edge Computing for IoT
The convergence of 5G technology and IoT is transforming how businesses operate across industry verticals. This 5G trend enables edge computing for the IoT by providing low-latency and high-bandwidth connectivity. With 5G, data can be transmitted and processed at the edge of the network, closer to the source of the data, rather than being sent to a central data center for processing.
While extensive IoT fleets can operate on a 4G network, a 5G network will improve upon those capabilities with massive multiple-input, multiple output capabilities, enabling an increased number of devices to connect with the cell tower. This is especially useful in IIoT, where a large number of IoT devices are present within a small area, which requires this level of connectivity.
The low latency and high bandwidth offered by 5G infrastructure also support innovative IoT solutions, such as integrating artificial intelligence, by enabling real-time processing of data and faster response times. Edge computing allows IoT devices to perform complex processing tasks and make decisions locally, rather than relying on a centralized cloud server. Businesses that operate in industries that require real-time processing will especially benefit from the digital transformation through 5G.
2.3 Adoption of Private 5G Networks
Private wireless networks are suitable for many industrial applications, and the market for private 5G networks is set to expand rapidly. Private 5G networks offer greater cybersecurity, control, and reliability, making them ideal for mission-critical applications that require high levels of security and privacy. This is one of the key 5G trends because it is applicable to industries such as manufacturing, healthcare, and finance, where IoT devices collect and share sensitive data that requires greater cybersecurity.
Businesses can also utilize private 5G networks to benefit from higher bandwidth, lower latency, and greater flexibility compared to public networks. Private 5G networks can be customized and tailored to meet the specific requirements of each application, making them ideal for specialized functions.
As more enterprises look to benefit from network-intensive technologies such as artificial intelligence, virtual reality, and big data, the demand for private wireless networks will continue to rise. Network operators are also more willing to offer private 5G networks because they represent a new revenue stream and a growth opportunity while also allowing them to provide a more personalized service to their customers.
2.4 General Availability of 5G
The 5G trends have moved towards access to 5G across the world, with 5G now available in 95 countries and reaching to more than 1.2 billion people. 5G networks are becoming more widespread in 2023, and as a result, many 5G trends and technologies are expected to emerge. Furthermore, 5G has become standard across all premium devices and many mid-range ones, making it an attractive option for consumers.
For businesses, this means a whole new world of possibilities. 5G networks offer faster speeds, higher bandwidth, and lower latency, enabling businesses to offer more innovative products and services. With the increased availability of 5G, businesses can develop and deploy emerging technologies like artificial intelligence and machine learning, augmented reality, and virtual reality. Remote work and related use cases will also rise in popularity as 5G becomes more common.
However, the distribution of 5G networks differs by region. 5G trends indicate that urban populations will likely be the first beneficiaries of public 5G rollouts and will benefit the most from 5G capabilities such as network densification and massive MIMO. With the deployment of 5G small cells for connectivity, 5G networks will support new use cases and faster, more reliable connectivity for the general public, especially in urban areas.
2.5 Partnerships for Rapid Deployments
By connecting disjointed B2B and B2C networks with ecosystems, service providers can become service enablers, working with businesses, consumers, and even competitors to create unique 5G offerings. Digital transformation is possible through new approaches to partnerships, through which service providers manage commoditization pressures and a hyper-competitive market.
Partnerships also provide businesses with access to industry skill sets that are in high demand, such as cloud, cybersecurity, and automation. By partnering with players who are already experts, cellular network providers offer specialized solutions to their customers that they may not have been able to provide otherwise. Hosted labs also help to speed ecosystem validation of use cases and new technology, ensuring that solutions are effective and efficient.
Furthermore, partnerships enable service providers to create products with global scale, as demonstrated by SAP, IBM, ServiceNow, and Deutsche Telekom, which have collaborated to create global connectivity offerings ranging from 5G to software-defined networks.
In the race to increase revenue and control costs in the 5G industry, collaborating with industry experts and integrating solutions will become one of the key 5G technology trends. Through collaboration, service providers can offer unique solutions to their customers, access necessary industry skill sets, and create products with global scale. These partnerships are necessary for businesses to remain competitive in an ever-changing market.
3 Conclusion
The ongoing rollout of 5G networks is set to transform businesses across all industries, bringing faster speeds, lower latency, and the ability to connect more devices than ever before. As technology continues to evolve, businesses need to stay up-to-date with the future trends in 5G in order to take advantage of its full potential. The growing demand for low latency and massive connectivity due to new use cases such as edge computing and the IoT is driving the growth of 5G networks. These trends will enable businesses to create new products and services, increase efficiency and productivity, and ultimately transform the way they operate. As 5G networks continue to mature, businesses that invest in this technology will have a competitive advantage over those that do not. They will be able to deliver faster, more reliable services to customers, streamline operations, and reduce costs. With the right approach, organizations can capitalize on the latest trends in 5G and unlock new opportunities for growth and innovation in the years to come.
Read More