Monaco has launched a Huawei-built 5G network, the first in Europe

Monaco became the first country in Europe to set up a 5G mobile phone network on July 9, 2019. The network was built using technology from Chinese tech giant Huawei, which has been placed on a US blacklist. Despite security concerns voiced by Washington and other world governments, the local operator has defended its equipment supplier.

Spotlight

Forehand Network components & Devices

Het Rotterdamse Forehand draait al 25 jaar mee in de top van de distributeurs binnen de Nederlandse IT-branche. Forehand is van netwerkkabelleverancier uitgegroeid tot een totaaldistributeur op het gebied van actieve en passieve netwerkproducten, of anders gezegd: network components & devices.

OTHER ARTICLES
5G

Enhancing Network Resilience in the Healthcare Sector to Prevent Downtime and Unusable Uptime

Article | September 28, 2023

Your patients have grown to trust your expertise and recommendations in matters regarding their healthcare. As the sector transitions into a more digital playing field, uninterrupted network connectivity is more than just a bonus; it’s a necessity. While there are many different challenges to completely integrating your practice into the digital world, internet outages are the costliest. Downtime can be caused by various factors, which can compromise patient safety, the faith your team instills in you, and your practice’s reputation and revenue. However, investing in the means to maintain a resilient network lets you maximize your network uptime to optimize resources. We'll look at four different strategies and their benefits for your infrastructure so you can focus on what you do best: providing healthcare excellence to your patients. Strengthening Network Infrastructure The traditional way of doing things may be great for your remedies and techniques. Still, with a growing number of patients and their contextually relevant demands, your network needs to be able to accommodate many different booking requests, increase user activity on your server, and store sensitive patient information. High-speed internet connections enhance your network performance and let you, your team, and your patients make the most of your uninterrupted uptime. Fiber-optic networks, when combined with load balancing and proper segmentation, can diffuse and direct network traffic efficiency and prevent congestion, which prevents downtime due to overload. Implementing Network Monitoring and Management Tools Much like your patients visit your practice to ensure everything is all right with the current state of their health, your network must also receive the same treatment. Identifying and pre-emptively resolving potential issues and vulnerabilities will prevent much more destructive or expensive problems from occurring. Use real-time tools to monitor your bandwidth usage and gain visibility of potential bottlenecks. Tools that offer risk monitoring deliver alerts about critical events that pose a threat to your business continuity. Your IT team will be better equipped to troubleshoot issues promptly and optimize performance. Conducting Regular Network Assessments and Audits Once you have the proper monitoring tools to manage your network topology better, proactive troubleshooting is a great way to spot-check whether your current solution is working as it should. A network audit is much like proactive troubleshooting; you are looking to see if anything could harm the overall system and catch it before it can develop. When auditing a network, the primary focus should be security measures. If patient and confidential data is not secure, the smooth operations of your business are the least of your worries. When conducting an audit, consulting with a network service provider will help identify issues with your protocols, data encryption, and firewall configuration. Establishing Redundancy and Disaster Recovery Plans Backing up private and confidential data is crucial to ensuring that sensitive information is not lost or exposed. Minimizing network downtime can often be achieved by having backup systems that will keep running in the event of an attack or outage. For example, a dedicated Cloud Access Network, power supplies, and switches will go a long way. When creating an internet contingency plan, outline steps and protocols with your team that you will take in the event of a complete failure, including things such as brand reputation management, customer service, and data loss prevention. Looking Forward As the lines between in-person and digital are blurred, navigating the complexities of implementing a robust network is paramount to your business. Strengthening your infrastructure, integrating redundant systems, and conducting regular audits and assessments with the proper monitoring and management tools will help you maximize uptime usage and minimize network downtime. Although overwhelming, working with a reputable network service provider can help you embrace your network topology to remain competitive.

Read More
Data Center Networking

Network as a Service (NaaS): A Technology Businesses Need Today

Article | July 5, 2023

Network as a Service (NaaS) is gaining ground due to shrinking network boundaries and fast technological evolution in response to changing market demands. NaaS brings with it networks, operations, and business architecture that are more agile and based on open standards. Rather than the conventional upfront cost, Network as a Service technology delivers networking gear, software, and operational and maintenance services as an operational expenditure. NaaS, like other cloud services, is maintained by the service provider and offered for a set cost. Why Do Businesses Today, Need Network as a Service (NaaS)? Businesses have recognized the advantages of the cloud in moving away from conventional on-premises networks. The corporate network boundary has practically vanished, and NaaS is becoming a popular technology. Offers Flexibility to Businesses Businesses can obtain a better return and save money by employing utility models instead of large expenditures on hardware and network equipment. Time for Innovations NaaS provides innovations by staying up to date with updated software versions via license upgrades and can fulfill corporate demands to introduce new goods and services more quickly. Minimizes Operational Risk NaaS will reduce operational risk associated with artificial intelligence (AI) and/or machine learning (ML); businesses will be able to implement the most recent product features and services. Top 3 Benefits of Network as a Service (NaaS) Access from Anywhere Depending on how a cloud-based network is setup, users should be able to access it from anywhere and on any device without employing a VPN, though this creates the need for strict access control. A user should ideally just need a connection to the internet and login details. Bundled with Security NaaS enables a single supplier to provide both networking and security services such as firewalls. As an outcome, the network and network security are more deeply integrated. Cost-effective Purchasing cloud services rather than developing one's own services generally leads to cost savings: cloud users do not have to purchase and maintain equipment, and the vendor already has the servers necessary to provide the service.

Read More
Network Management, Network Security

Edge Computing and the Future of the Data Center

Article | July 17, 2023

If you are clued into IT, then most likely, you are aware of the latest trending technology, edge computing data centers. Edge Computing ensures exceptional speed, with firm privacy and security compared to the conventional cloud methods, thus making edge data centers an imperative option for everyone. The world is undoubtedly moving faster, thereby perpetually pushing the power of next-generation innovation. Edge computing data center has emerged as a substitute to cloud computing, that keeps the data processing power at the “edge” of the network. But, it also comes with a set of challenges to the network. Edge computing devices that have processing functions are expensive and to operate the older version, additional equipment is required, which incurs extra expenditure. Despite the challenges, edge computing has turned out to be the biggest technology investment. So, let’s break it down here with comprehensive details to understand how this latest trending technology is all set to shape the future of the data center. A Brief on Edge Computing The word edge refers to the literal geographic distribution that brings computation and data storage nearer to the data sources. It improves the response duration and saves bandwidth as it runs fewer processes in the cloud and shifts those processes to local destinations such as on a user’s computer, an edge server, or an IoT for that matter. In a nutshell, edge computing is a topology that enables data to be analyzed, processed, and transferred at the edge of a network, It helps diminish the long-distance communication that takes place between a client and server. A significant advantage of using edge computing lies in its high speed and better reliability. In addition, it offers improved security by distributing processing, storage, and applications across wide-ranging devices and data centers. What’s more, it paves the way for a budget-friendly route to scalability as well as versatility, enabling organizations to expand their computing capabilities through an amalgamation of IoT devices and edge computing data centers. Edge Data Centers and Their Usage! There isn’t any specific explanation that would describe the idea of an edge data center, considering it isn’t one consistent style of the facility. It instead consists of smaller facilities that serve both edge computing and larger-scale cloud services. Since they are located closer to the population, they could easily extend the edge of the network to deliver cloud computing resources and cached content to end-users. Typically, they connect to a larger central data center or multiple computer data centers seamlessly. Latency has forever been a matter of concern for cloud data center managers. In recent times, it has emerged as a key obstacle due to big data, the Internet of Things, cloud and streaming services, and other technology trends. Moreover, in today’s time and age, end-users and devices demand access to applications and services anytime and anywhere, which leaves no room for latency. Consequently, companies across the spectrum are establishing edge data centers to ensure cost-effective and high-functionality ways to provide customers with content and performance. A great way to learn more about the data center would be to understand its usage. The following are some of the services that primarily rely on edge computing: Internet of Things Internet of Things tools essentially require low latency and reliable connections to the data center to function with high intensity. IoT devices add up a vast number of edge computing utilities; thus using edge computing makes it simple and effective. Streaming Content Streaming content is one of the most consumed form of infotainment. Users today want their video to get started with a single click that edge facilities help achieve. Drones While Drones are increasingly getting popular, their features are also massively advancing. For example, with edge computing, drones could be controlled even from far-flung locations without any hitch. Artificial Intelligence AI is one of the most thriving technologies that have taken over the world with its magnificent scalability, To make AI advantageous to the system, it should be able to access data, process it, and communicate with the end-users effectively and quickly which an edge data center allows. Virtual Reality Virtual Reality needs to get updates as quickly as possible to create an immersive world for the users. Though primarily associated with gaming, VR has also gained recognition for different paradigms such as communication, education, and several other significant uses. Edge Computing and Data Centers – The Future! A dedicated 5G Provider Edge Computing is underway, building mammoth telecommunications capabilities into data center growth trends. These facilities could change the dynamics of 5G providers for enterprise brands and emerge as the dedicated 5G providers for organizations. Support sustainable business goals Edge data centers are being looked to as a periphery that can help build more efficient solutions to enable the sector’s sustainability. Edge computing is specifically designed to keep applications and data closer to devices and their users. Therefore, there is little doubt over the impact that edge computing will have on sustainable business goals. Making way for Robot Security Guards Evolution in AI and IoT has drastically changed the human staffing needs inside the data centers and made way for Robots. Currently, Robots have been deployed in some of the hyper-scale data centers for specific tasks. Whether it is the automated inspection, faulty disc locating, or disc charging, with Robots at the helm of affairs, everything can be completed seamlessly. Many data center and robotics professionals are predicting that the next couple of years will be big leaps when it comes to placing more robotics in the data center environment. Bill Kleyman - now Switch EVP of digital solutions - wrote in 2013. How Does One Choose a Location For a Data Center? Data centers are a critical part of any business enterprise operations. Hence, decisions regarding its locations cannot be relegated to an arbitrary choice. In the past, companies used to set up their edge data centers closer to their offices to maintain the proximity. However, that is swiftly changing now as the equipment administration and monitoring can be achieved remotely. With the data center industry transforming, performance is no longer the sole consideration. To create a defining success of the data centers, companies are now looking for different sites for their data centers, primarily focusing on factors like economic, political, social, and geographical. The current scenario highlights the significance of considering Energy efficiency, business continuity plan, and resource optimization. With so much at stake, the edge data centers should be effortlessly accessible. Conclusion Edge computing and data center growth has garnered a lot of interest among the users over the past few years. It will continue to thrive for many more years to come as it meets the eye of the global tech demands and the current and future needs of the users worldwide. Frequently Asked Questions What are the benefits of edge computing? One of the top benefits of edge computing is its quick response time and low latency period across all devices. It also simplifies the bandwidth and creates less risk in corporate security. What are the drawbacks of edge computing? A significant drawback of edge computing is the need of a huge storage capacity. The security challenge is also relatively high due to the massive amount of data stored in it. Moreover, the expensive cost factor is also a disadvantage of it. { "@context": "https://schema.org", "@type": "FAQPage", "mainEntity": [{ "@type": "Question", "name": "What are the benefits of edge computing?", "acceptedAnswer": { "@type": "Answer", "text": "One of the top benefits of edge computing is its quick response time and low latency period across all devices. It also simplifies the bandwidth and creates less risk in corporate." } },{ "@type": "Question", "name": "What are the drawbacks of edge computing?", "acceptedAnswer": { "@type": "Answer", "text": "A significant drawback of edge computing is the need of a huge storage capacity. The security challenge is also relatively high due to the massive amount of data stored in it. Moreover, the expensive cost factor is also a disadvantage of it." } }] }

Read More
Wireless, 5G

5G Small Cells: The Future of Wireless Networks

Article | May 18, 2023

5G small cells form the backbone of the modern wireless networks. Learn more about this technology is revolutionizing 5G deployment and enabling various use cases across industries in this article. Contents 1 Introduction to 5G Small Cells for Modern Businesses 2 5G Small Cells: Overview 2.1 Characteristics of 5G Small Cells 2.2 How Small Cells Fit into 5G Architecture 3 Benefits of 5G Small Cells for Businesses 3.1 Improved Coverage and Capacity 3.2 Enhanced Network Performance 3.3 Lower Latency 3.4 Cost-effectiveness 4 Use Cases for 5G Small Cells 4.1 Urban Areas 4.2 Rural Areas 4.3 Indoor Environments 5 Conclusion 1 Introduction to 5G Small Cells for Modern Businesses Small cells are low-power radio access nodes that operate in licensed and unlicensed spectrum bands and are typically deployed in areas with high demand for wireless connectivity. They are a vital component of the 5G wireless network architecture and are designed to complement traditional cell towers, providing improved coverage, network capacity, and faster data speeds. Small cells come in several types, including femtocells, picocells, and microcells, and can be deployed according to the use case. 2 5G Small Cells: Overview 2.1 Characteristics of 5G Small Cells 5G small cells are characterized by small form factors and are designed to be compact and discreet for deployment in various settings, such as urban areas, rural areas, indoor environments, and public spaces. In addition, they consume less power than traditional cell towers, making them more energy-efficient. They also operate on high-frequency bands, which enables them to provide faster data speeds and lower latency than traditional cell towers, which makes small cells essential for 5G. The 5G small cell architecture can be deployed in dense networks, providing better coverage and capacity in areas where traditional cell towers may not be able to reach. Also, a 5G small cell antenna can be configured to provide seamless handoffs between cells, ensuring users have a consistent and uninterrupted wireless experience. These characteristics make them ideal for specific 5G use cases, which will be explored further in the article. 2.2 How Small Cells Fit into 5G Architecture Small cells and 5G evolution are closely linked, and this technology is an ideal solution for future wireless networks. They offer greater capacity, coverage, and flexibility than traditional cell towers, allowing them to meet the demands of an increasingly connected world. By operating on high-frequency bands and being deployed in dense networks, small cells in 5G can provide faster data speeds, lower latency, and better coverage than previous generations of wireless networks. Additionally, their small form factor and flexible deployment options allow for use cases like private 5G networks that revolutionize industries. 3 Benefits of 5G Small Cells for Businesses 5G networks will support a massive increase in connected devices, including smartphones, IoT sensors, and other devices. Small cells are critical for achieving the full potential of 5G networks and the exciting new applications and services they will enable. 3.1 Improved Coverage and Capacity 5G small cells offer improved coverage over traditional cell towers in certain situations, particularly in urban areas. Buildings and other obstacles interfere with wireless signals, so the connection quality decreases in areas with such infrastructure. By deploying small cells closer to users, the network can provide better coverage and capacity in these areas. Small cells can also be deployed indoors, providing better coverage and capacity in buildings and other enclosed spaces. This is important due to poor wireless range, signal interference from walls, and other obstacles. By deploying small cells indoors, the network can provide better coverage and capacity in these areas, improving the overall wireless experience for users. 3.2 Enhanced Network Performance The deployment of small cells enables network densification, which allows several devices to connect to the network simultaneously. This can help reduce network congestion and improve overall network performance, particularly in urban areas. They can also be configured to provide seamless handoffs between cells, ensuring that users have a consistent and uninterrupted wireless experience. This is important because users often move between different areas with different coverage levels and capacities, providing a streamlined experience. 3.3 Lower Latency Small cells are designed to operate on high-frequency bands, which enables them to provide faster data speeds and lower latency than prior generations of wireless networks. This is especially important for applications that require real-time communication, such as virtual reality, autonomous vehicles, and remote surgery. By providing faster data speeds and lower latency, small cells can help enhance these applications' performance, providing a better overall user experience. 3.4 Cost-effectiveness Small cells offer a cost-effective alternative to traditional cell towers, particularly in urban areas with high land and real estate costs. By mounting 5G small cell antennas on existing infrastructure, such as lampposts and buildings, deployment costs can be lowered. Additionally, small cells can be deployed in a modular fashion, allowing for targeted and cost-effective expansion based on the required coverage and capacity. This approach avoids large-scale and expensive deployments of new infrastructure. Moreover, small cells can be powered by low-cost, low-power sources like solar panels or batteries, reducing ongoing operational costs. Furthermore, small cells consume less power than traditional cell towers, resulting in lower energy costs. 4 Use Cases for 5G Small Cells 4.1 Urban Areas As discussed previously, small cell radio antennas in 5G can improve networks in dense urban environments, alleviating network congestion and improving data speeds. In addition, by deploying small cells in areas with high user demand, network operators can provide targeted coverage and capacity improvements to specific areas, ensuring that users have fast and reliable connectivity. 4.2 Rural Areas Small cells can be used to extend coverage to underserved or unserved areas by traditional cell towers. They can fill in coverage gaps, providing reliable connectivity to users in rural areas that may not have access to high-quality wireless services. This will enable use cases such as remote workforces in rural areas, smart agriculture, and distance education and training. 4.3 Indoor Environments Traditional cell towers may not be able to provide reliable connectivity indoors due to physical barriers such as thick walls and ceilings. Small cells can provide targeted coverage and capacity to specific areas, such as conference rooms or shopping malls, where users require high-quality wireless connectivity. In addition to improving range, small cells can help alleviate network congestion and improve data speeds in high-traffic indoor environments. 5 Final Thoughts Small cells are a crucial element in developing and implementing 5G technology. By leveraging a small form factor and high-frequency band usage, small cells facilitate the deployment of 5G networks in a more cost-effective and targeted manner than traditional cell towers. They support a wide range of use cases by providing reliable and high-quality wireless connectivity to a growing number of devices. They will continue to be a critical technology for businesses and organizations seeking to leverage the benefits of 5G technology.

Read More

Spotlight

Forehand Network components & Devices

Het Rotterdamse Forehand draait al 25 jaar mee in de top van de distributeurs binnen de Nederlandse IT-branche. Forehand is van netwerkkabelleverancier uitgegroeid tot een totaaldistributeur op het gebied van actieve en passieve netwerkproducten, of anders gezegd: network components & devices.

Related News

Enterprise Mobility,Mobile OS

MATRIXX Software’s Digital Commerce Platform Available in Microsoft’s Azure Marketplace

MATRIXX | January 27, 2023

5G monetization solutions leader, MATRIXX software, yesterday announced that the MATRIXX Digital Commerce Platform (DCP) is now available on the Microsoft Azure Marketplace, an online store providing software and services to be used with the Azure cloud computing platform. MATRIXX DCP, a cloud native monetization platform gives Communications Services Providers (CSPs) a wide range of monetization options, making it simpler to take advantage of 5G revenue prospects. By installing MATRIXX DCP on Azure Kubernetes Service (AKS), CSPs may take full advantage of the reliable Azure cloud platform's benefits for the vital goal of monetizing new and cutting-edge services. With a no-code, cloud-native, real-time platform, MATRIXX DCP, a 3GPP-compliant converged charging solution, enables telcos to monetize at web scale. With MATRIXX DCP, operators can scale swiftly in the 5G era and beyond, create differentiated digital consumer experiences, and drive innovation. Marc Price, CTO at MATRIXX Software, said, “Multi-cloud deployments are increasingly important for operators around the world, and are defining the next era of telecommunications.” He further added, “MATRIXX empowers our customers to have access to advanced monetization capabilities, wherever they choose to deploy. Microsoft is a trusted cloud ecosystem partner for CSPs, and with MATRIXX DCP in the Microsoft Azure Marketplace, telcos can easily procure and deploy monetization capabilities for emerging services.” About MATRIXX Software Matrix Software provides converged charging and commerce solutions. It’s cloud-native Digital Commerce Platform offers mission-critical, network-grade software that opens new prospects for network monetization. MATRIXX gives service providers the agility they need to quickly build, deploy, and monetize new products and services because to its no-code configuration features. Many of the world’s top IoT players, network infrastructure providers, and communications firms run on the MATRIXX platform. Utilizing business innovation and on-demand customer experience through MATRIXX enables businesses to compete better, produce new revenue, and pursue growth possibilities across markets and verticals.

Read More

Wan Technologies,Wireless,5G

AMD and Viettel Collaborate on 5G Mobile Network Expansion

AMD | December 05, 2022

AMD and Viettel High Tech (Member of Viettel Group) today announced the successful completion of a 5G mobile network field trial deployment conducted by Viettel and powered by AMD Xilinx Zynq™ UltraScale+™ MPSoC devices. As the largest telecom operator in Vietnam serving more than 130 million mobile customers, Viettel High Tech has a rich history of using AMD radio technology with prior 4G deployments and is now accelerating new networks via new 5G remote radio heads. Designed to meet the growing capacity and performance requirements of mobile users globally, the Viettel 5G mobile network is expected to be completed by the end of 2022. AMD is the exclusive radio unit silicon supplier for Viettel’s indigenous 5G radio development. After the successful completion of the first field trial, Zynq MPSoCs are now set to be extended to an additional 300 Macro 8T8R base stations and 900 5G 8T8R Macro radios. The Zynq UltraScale+ MPSoC was also chosen by Viettel for its first-generation 64T64R Massive MIMO radio which is currently being optimized for field trials. Viettel is developing the next generation of radios to also include Zynq UltraScale+ RFSoC devices, to provide industry-leading integration and higher performance. “Viettel is committed to advancing mobile technology leadership by working closely with AMD to incorporate its adaptable SoC technology into our new generation of 5G networks. Going from VHT's history of making 4G BTS, this decision to scale for the growing demands of 5G was based on evaluating various factors including flexibility, simplification, design stability and the experience of engineers.” Nguyen Vu Ha, general director of Viettel High Tech “5G provides new opportunities to offer higher levels of performance, power efficiency and new services along with increased reliability required to meet the growing data demands of cellular networks,” said Yousef Khalilollahi, corporate vice president of APAC sales, Adaptive and Embedded Computing Group, AMD. “We are proud of our close collaboration with Viettel and remain focused on enabling its mobile network to deliver the optimal end-user experience as well as the flexibility to evolve and grow as Viettel’s user base and required bandwidth continue to increase globally.” About Viettel High Tech As the R&D arm of Viettel Group, Viettel High Tech develops full 5G network architecture including 5 layers: Service/App layers, Core layers, Transportation layers, Access layers, Devices; makes Vietnam one of the few countries that can produce 5G equipment. Collaboration with the leading partners is VHT’s strategy. With the desire to experiment, exchange knowledge, further develop diverse fields, VHT is moving to accompany the international high-tech community. About AMD For more than 50 years AMD has driven innovation in high-performance computing, graphics and visualization technologies. Billions of people, leading Fortune 500 businesses and cutting-edge scientific research institutions around the world rely on AMD technology daily to improve how they live, work and play. AMD employees are focused on building leadership high-performance and adaptive products that push the boundaries of what is possible.

Read More

Network Infrastructure,Network Management,Wan Technologies

Verizon continues to deploy 5G Ultra Wideband faster than expected

Verizon | December 06, 2022

Verizon now covers more than 175 million people with their ultra fast, ultra reliable 5G Ultra Wideband service, and will offer nationwide 5G Ultra Wideband in Q1 2023. The ongoing C-Band rollout is a full 13 months ahead of the original schedule, and continues to accelerate. Less than 21 months after announcing the results of the FCC’s C-band auction and after securing early access to an additional 30 markets this year, Verizon accelerated its build plan and surpassed its goal of reaching 175 million people covered by the end of 2022, a month ahead of schedule. “Our customers don’t stand still and neither does our network. Today, more than one out of every two Americans now have access to 5G Ultra Wideband. We know our customers rely on our service every day and we work for them – continuously enhancing, expanding and improving our wireless network. And as proud as I am to have crossed this milestone, I am equally proud of the way we are building our network – with the most advanced technologies, industry leading security, a robust fiber underpinning and a robust and varied spectrum portfolio. We are building this right. We are building this as a platform for innovation for years to come.” Hans Vestberg, Chairman and CEO of Verizon. Verizon’s 5G Ultra Wideband brings power and performance comparable to a wired broadband internet connection to customers’ pockets. With download speeds up to one gigabit per second and the capacity to support data-heavy actions, 5G Ultra Wideband frees people up to do things on the go that many could only do before when connected to their home internet service. This includes everything from downloading huge documents and seamlessly streaming movies in HD audio and video, to playing console quality games and conducting video chats, video conferencing and FaceTime calls with clear sound and video. Verizon customers have much more to look forward to Verizon will continue to build out its 5G Ultra Wideband network using C-band spectrum providing service for millions more customers in the coming months, but Verizon’s engineers are not losing sight of the other critical components that will give customers the most reliable, secure, and robust experience possible on the Verizon network. In addition to providing greater coverage, especially in rural and suburban areas, Verizon will also enhance capacity by activating 100 MHz of C-Band spectrum in many markets, a significant step up from the 60 MHz of spectrum available when deployment first began. Once all of its licensed spectrum is made available, Verizon will have up to 200 MHz of C-Band spectrum deployed in many markets, which will provide exceptional speed and capacity. Complementing the wide coverage of Verizon’s premier C-Band spectrum, Verizon will continue deploying 5G on mmWave spectrum which provides for exponential capacity in areas with significantly dense populations such as venues, stadiums, arenas, airports, major metro areas, office complexes and more. mmWave will also continue to be used for private network deployments when enterprise customers need the fastest, most robust 5G service available for their enterprise applications from wireless manufacturing solutions to connected vehicles to remote healthcare and more. In addition to making 5G more accessible to more people, Verizon will continue focusing on building out the advanced technologies that provide increased security, reliability and customized experiences for customers. Those advancements include fully deploying the 5G core with Verizon’s proprietary cloud platform built specifically for telco workloads, advancing the fiber network to handle exponential increases in data traffic, continuing massive virtualization of the network to add programmability and flexibility into the network, using artificial intelligence to drive reliability and performance, continuing to develop edge computing capabilities to drive down latency, and continuing to advance antenna configurations to drive speed and efficiency.

Read More

Enterprise Mobility,Mobile OS

MATRIXX Software’s Digital Commerce Platform Available in Microsoft’s Azure Marketplace

MATRIXX | January 27, 2023

5G monetization solutions leader, MATRIXX software, yesterday announced that the MATRIXX Digital Commerce Platform (DCP) is now available on the Microsoft Azure Marketplace, an online store providing software and services to be used with the Azure cloud computing platform. MATRIXX DCP, a cloud native monetization platform gives Communications Services Providers (CSPs) a wide range of monetization options, making it simpler to take advantage of 5G revenue prospects. By installing MATRIXX DCP on Azure Kubernetes Service (AKS), CSPs may take full advantage of the reliable Azure cloud platform's benefits for the vital goal of monetizing new and cutting-edge services. With a no-code, cloud-native, real-time platform, MATRIXX DCP, a 3GPP-compliant converged charging solution, enables telcos to monetize at web scale. With MATRIXX DCP, operators can scale swiftly in the 5G era and beyond, create differentiated digital consumer experiences, and drive innovation. Marc Price, CTO at MATRIXX Software, said, “Multi-cloud deployments are increasingly important for operators around the world, and are defining the next era of telecommunications.” He further added, “MATRIXX empowers our customers to have access to advanced monetization capabilities, wherever they choose to deploy. Microsoft is a trusted cloud ecosystem partner for CSPs, and with MATRIXX DCP in the Microsoft Azure Marketplace, telcos can easily procure and deploy monetization capabilities for emerging services.” About MATRIXX Software Matrix Software provides converged charging and commerce solutions. It’s cloud-native Digital Commerce Platform offers mission-critical, network-grade software that opens new prospects for network monetization. MATRIXX gives service providers the agility they need to quickly build, deploy, and monetize new products and services because to its no-code configuration features. Many of the world’s top IoT players, network infrastructure providers, and communications firms run on the MATRIXX platform. Utilizing business innovation and on-demand customer experience through MATRIXX enables businesses to compete better, produce new revenue, and pursue growth possibilities across markets and verticals.

Read More

Wan Technologies,Wireless,5G

AMD and Viettel Collaborate on 5G Mobile Network Expansion

AMD | December 05, 2022

AMD and Viettel High Tech (Member of Viettel Group) today announced the successful completion of a 5G mobile network field trial deployment conducted by Viettel and powered by AMD Xilinx Zynq™ UltraScale+™ MPSoC devices. As the largest telecom operator in Vietnam serving more than 130 million mobile customers, Viettel High Tech has a rich history of using AMD radio technology with prior 4G deployments and is now accelerating new networks via new 5G remote radio heads. Designed to meet the growing capacity and performance requirements of mobile users globally, the Viettel 5G mobile network is expected to be completed by the end of 2022. AMD is the exclusive radio unit silicon supplier for Viettel’s indigenous 5G radio development. After the successful completion of the first field trial, Zynq MPSoCs are now set to be extended to an additional 300 Macro 8T8R base stations and 900 5G 8T8R Macro radios. The Zynq UltraScale+ MPSoC was also chosen by Viettel for its first-generation 64T64R Massive MIMO radio which is currently being optimized for field trials. Viettel is developing the next generation of radios to also include Zynq UltraScale+ RFSoC devices, to provide industry-leading integration and higher performance. “Viettel is committed to advancing mobile technology leadership by working closely with AMD to incorporate its adaptable SoC technology into our new generation of 5G networks. Going from VHT's history of making 4G BTS, this decision to scale for the growing demands of 5G was based on evaluating various factors including flexibility, simplification, design stability and the experience of engineers.” Nguyen Vu Ha, general director of Viettel High Tech “5G provides new opportunities to offer higher levels of performance, power efficiency and new services along with increased reliability required to meet the growing data demands of cellular networks,” said Yousef Khalilollahi, corporate vice president of APAC sales, Adaptive and Embedded Computing Group, AMD. “We are proud of our close collaboration with Viettel and remain focused on enabling its mobile network to deliver the optimal end-user experience as well as the flexibility to evolve and grow as Viettel’s user base and required bandwidth continue to increase globally.” About Viettel High Tech As the R&D arm of Viettel Group, Viettel High Tech develops full 5G network architecture including 5 layers: Service/App layers, Core layers, Transportation layers, Access layers, Devices; makes Vietnam one of the few countries that can produce 5G equipment. Collaboration with the leading partners is VHT’s strategy. With the desire to experiment, exchange knowledge, further develop diverse fields, VHT is moving to accompany the international high-tech community. About AMD For more than 50 years AMD has driven innovation in high-performance computing, graphics and visualization technologies. Billions of people, leading Fortune 500 businesses and cutting-edge scientific research institutions around the world rely on AMD technology daily to improve how they live, work and play. AMD employees are focused on building leadership high-performance and adaptive products that push the boundaries of what is possible.

Read More

Network Infrastructure,Network Management,Wan Technologies

Verizon continues to deploy 5G Ultra Wideband faster than expected

Verizon | December 06, 2022

Verizon now covers more than 175 million people with their ultra fast, ultra reliable 5G Ultra Wideband service, and will offer nationwide 5G Ultra Wideband in Q1 2023. The ongoing C-Band rollout is a full 13 months ahead of the original schedule, and continues to accelerate. Less than 21 months after announcing the results of the FCC’s C-band auction and after securing early access to an additional 30 markets this year, Verizon accelerated its build plan and surpassed its goal of reaching 175 million people covered by the end of 2022, a month ahead of schedule. “Our customers don’t stand still and neither does our network. Today, more than one out of every two Americans now have access to 5G Ultra Wideband. We know our customers rely on our service every day and we work for them – continuously enhancing, expanding and improving our wireless network. And as proud as I am to have crossed this milestone, I am equally proud of the way we are building our network – with the most advanced technologies, industry leading security, a robust fiber underpinning and a robust and varied spectrum portfolio. We are building this right. We are building this as a platform for innovation for years to come.” Hans Vestberg, Chairman and CEO of Verizon. Verizon’s 5G Ultra Wideband brings power and performance comparable to a wired broadband internet connection to customers’ pockets. With download speeds up to one gigabit per second and the capacity to support data-heavy actions, 5G Ultra Wideband frees people up to do things on the go that many could only do before when connected to their home internet service. This includes everything from downloading huge documents and seamlessly streaming movies in HD audio and video, to playing console quality games and conducting video chats, video conferencing and FaceTime calls with clear sound and video. Verizon customers have much more to look forward to Verizon will continue to build out its 5G Ultra Wideband network using C-band spectrum providing service for millions more customers in the coming months, but Verizon’s engineers are not losing sight of the other critical components that will give customers the most reliable, secure, and robust experience possible on the Verizon network. In addition to providing greater coverage, especially in rural and suburban areas, Verizon will also enhance capacity by activating 100 MHz of C-Band spectrum in many markets, a significant step up from the 60 MHz of spectrum available when deployment first began. Once all of its licensed spectrum is made available, Verizon will have up to 200 MHz of C-Band spectrum deployed in many markets, which will provide exceptional speed and capacity. Complementing the wide coverage of Verizon’s premier C-Band spectrum, Verizon will continue deploying 5G on mmWave spectrum which provides for exponential capacity in areas with significantly dense populations such as venues, stadiums, arenas, airports, major metro areas, office complexes and more. mmWave will also continue to be used for private network deployments when enterprise customers need the fastest, most robust 5G service available for their enterprise applications from wireless manufacturing solutions to connected vehicles to remote healthcare and more. In addition to making 5G more accessible to more people, Verizon will continue focusing on building out the advanced technologies that provide increased security, reliability and customized experiences for customers. Those advancements include fully deploying the 5G core with Verizon’s proprietary cloud platform built specifically for telco workloads, advancing the fiber network to handle exponential increases in data traffic, continuing massive virtualization of the network to add programmability and flexibility into the network, using artificial intelligence to drive reliability and performance, continuing to develop edge computing capabilities to drive down latency, and continuing to advance antenna configurations to drive speed and efficiency.

Read More

Events