Network Management, Network Security
Article | July 17, 2023
Something revolutionary that solves problems becomes a product or service with many trade secrets you cannot afford to let loose in the market. All small, medium, and large businesses worry about how vulnerable they are to threats as far as data sharing within the organization is concerned. This is where a private network comes in.
Every business wants to take a technological leap for scalability. Two of the factors that private networks address are independence from commercial carriers for the network and maintaining the privacy of trade secrets. This helps achieve long-term goals to scale your business.
Powering your enterprise private network with the futuristic speeds of 5G can help your business achieve two goals at once. Take a look at why 5G has now started to matter even more.
Why 5G?
By 2026, the 5G market will reach $667.90 billion, with a CAGR of 122.3% from 2021 to 2026. It is estimated to go beyond $1.87 trillion by 2030. This massive technological transition will forever change how we communicate, process information, and connect with the cloud. A boost in turnkey research and development is one of the vital benefits of 5G that will help your business be one step ahead in the market.
What Makes the 5G Enterprise Private Network Ideal for Small and Medium-Sized Businesses?
A private enterprise network is VPN, LAN, WAN, or cloud-based. High-speed internet and low-latency data sharing or transfer are achieved using fiber optics in a 5G EPN. Expect superior service security, network slicing, enhanced service quality, and no risk of network congestion. Design your 5G EPN as per the software integrations required for your small and medium-sized business. This will allow seamless integration for present and future needs.
5G is about 100 times faster than 4G, leading to incredible speeds and unlocking many never-seen-before possibilities accelerating the speed of research for your enterprise. The network efficiency and the traffic capacity it can handle are 100x. Connecting and sharing data in almost real-time is made possible with 5G.
This means, a private 5G network can reduce the infrastructure needs of relatively more demanding managed wired networks for small and medium-sized businesses supporting 5G ecosystems. But it will keep up with the most advanced wireless technologies of the future and stop supporting older ones. In addition, 5G supports lower power consumption than 4G during data transmission. This means enterprises get better battery life on devices running 5G, including 5G IoT devices.
How Secure is a 5G Enterprise Private Network?
The 5G enterprise private networks are integrated or hybrid EPNs (enterprise private networks) and independent EPNs. It depends on whether your business wants to lease 5G spectrum from the government or a mobile network operator (MNO) and whether you will use a hybrid or independent EPN.
• Integrated 5G EPN: A small business can lease a private 5G line from an MNO. A public 5G network backs a virtual private network (VPN) for medium-to-small businesses. On the other hand, MEC and UPF from a public 5G network are used to set up a local network for large businesses.
• Independent 5G EPN: This is the most secure type of 5G EPN, the independent 5G EPN. It is independently built for your enterprise, owned, operated, and managed by you. You will be handling the RAN, core, edge computing nodes, and the wireless spectrum reserved for your use. These are mostly the goals of a large business that sends and stores data that needs to be very secure.
An independent 5G EPN is the best solution for large enterprises looking for the most secure private network. Also, it applies to businesses dealing with massive amounts of data.
Why Use the Cloud for Storage and Retrieval of Data in 5G EPN?
Access computing resources, data storage, development tools, and applications across the internet with the help of the cloud. The combined features of 5G and a private enterprise network create a healthy environment to implement cloud infrastructure. When thinking about using the cloud to store and get data in a 5G EPN, keep in mind the good things about it.
Interconnected, shared resources
5G speed
Improved reliability
Increased data accessibility
Better privacy and security
Efficient connectivity
Now that we have learned networking fundamentals for a better 5G EPN are resolved with the help of the cloud, let us discover how it can help your business scale.
How Can Your Small, Medium, or Large Business Scale up With a 5G EPN Network Easily?
You can use a 5G enterprise private network, or EPN, to get the most important benefits for a small business.
Speed to promote an industrial digital transformation
IoT readiness
Better control over digital assets.
Improved security
Reliable coverage
Network slicing
Ultra-low latency
Improved bandwidth
Improved quality of service (QoS)
You will have complete control over configuring and customizing your EPN, managed independently by your in-house 5G networks. Explore the future avenues of 5G private networks in detail.
The Future of 5G Private Networks and Wi-Fi with Industrial Use Cases:
According to a study by RAN Research, by 2028, private 5G networks will generate about $23.5 billion, with 19% usage in the manufacturing industry and 12% of the network in the healthcare industry. The deployment of the 5G network and upgraded Wi-Fi standards will likely be saturated by 2024. Most of the investments would be towards upgrading the infrastructure and maintaining the network.
The goal of fierce competition among telecom network operators will be to gain rapid market share, bringing down the cost of usage. The new service providers will garner competition from telecom giants, while 5G private networks from different enterprises will still be dominant and mainstream in providing security, privacy, and data isolation.
Leading Industrial Use Cases
Healthcare: A revolution in healthcare benefiting from 5G technology is bound to happen with their transition to a cloud-native architecture. The need for high-speed and reliable connectivity will arise sooner or later, and 5G private networks will perfectly meet the requirement. The driving forces for healthcare to adopt 5G private networks include the shift to demographics, value-based and patient-centric care, and emergency healthcare. In addition, the use of big data analytics, the internet of medical things (IoMT), better wearable medical technology, hospital remote monitoring systems, e-Health and more will need the speed that 5G offers.
Manufacturing: The Industrial Internet of Things (IIoT) uses private 5G networks. Depending upon the software-defined implementation of the 5G network, 5G does not just allow remote monitoring of production lines; it also regulates maintenance and device lifecycle while powering industrial automation. 5G is also finding its way into implementing augmented reality for troubleshooting electronics, additive manufacturing and 3D printing, automated guided vehicles, camera-based video analytics and more. Collaborative robotics, supply chain optimization, and maintenance using a digital twin are a few other things that are worth mentioning.
Supply Chain: Due to near-shoring, manufacturing and distribution will decentralize. Due to Internet of Things (IoT) devices with sensors, supply chain and shipping logistics companies will be able to reduce delivery times, have better control over warehouse and transportation environments, and offer great asset management services.
Final Thoughts
Finding the right 5G private network type for your enterprise is easy. It offers enhanced security while connecting to the cloud, IoT and more. This would allow the development of futuristic products and services, touching multiple industries, with healthcare, manufacturing, warehousing, and logistics among the top. Keeping trade secrets and the latest research and development secure and enhancing the capabilities by integrating future technologies will improve with a 5G EPN. With a 5G private network for your enterprise being used on a large scale, the future of networking looks bright.
FAQs:
What is the difference between a public 5G network and a private 5G network?
A single location or several locations of the same institution, business, or organization are the focus of a private 5G network. On the contrary, the public 5G network is nationwide with millions of subscribers without being dedicated to serving a single entity. Because of this, 5G EPN infrastructure solutions will probably be used on college campuses, in factories, hospitals, military bases, transportation hubs, and other places.
What is a private 5G network and what are the benefits of a private 5G network?
A 5G private network offers low latency, high bandwidth and multiple connections with access control, which are perfect for business applications for small, medium and large enterprises. Furthermore, 5G private networks allow you to tailor them to your business requirements, making them an excellent investment for your business. Again, while diversifying your business as per customer and market demand, it is crucial to have a networking infrastructure that can adapt to your changing needs. Therefore, a private 5G network becomes even more critical.
How does EPN help in centralization and business continuity?
When implementing business continuity planning and centralization of your organization, a 5G EPN can provide several benefits over a public network. It makes integrations easy, provides high-quality services, improves access control and reliability, and lets your business share resources in the best way for its current and future needs.
Read More
Wireless, 5G
Article | May 18, 2023
Introduction
5G is predicted to have a significant impact on how cloud computing operates in the future. It will undoubtedly revolutionize the communication and networking industry. In addition, it will have a significant impact on all other industries. Transmission speeds will be 10 times faster in 5G than in 4G.
Apart from networking and communication industries, it will also revolutionize other healthcare, automotive, and many more. Commercial 5G smartphones are already in the market. A study report by Ericsson Mobility predicts that there will be one billion 5G subscriptions by 2023. It will account for about 20% of the mobile data traffic.
5G, with its features such as low latency performance and high speed, has all the capabilities of developing cloud computing and take to the next level. As a result, there will be an unpredictable positive impact of 5G on cloud computing, especially in the industries and sectors that use the latest technologies such as the Internet of Things, machine learning, and AI.
It has already started redefining business networks. It is also expected to make tremendous, unpredictable progress and changes in how cloud computing and networks perform in storing, moving, and accessing data. It will be possible as 5G brings more technological applications to make digital transformations faster and more efficient for businesses.
5G Network- Advantages
As said in the introduction, there are many advantages to 5G network. Some of them can be:
Greater transmission speed
Lower latency
Higher capacity
Compared to 4G, 5G has increased bandwidth.
These features will change the way people work, live, and play in the future once the 5G network comes into play widely.
How Will 5G Impact Cloud Computing?
Undoubtedly 5G has the potential to redefine the future of cloud computing. It will transform edge computing. Let us look in detail at what impact 5G will bring in cloud computing.
Mobile Cloud Applications to Become More Efficient and Widely Used
Undoubtedly 5G has the potential to redefine the future of cloud computing. It will transform edge computing. Let us look in detail at what impact 5G will bring in cloud computing.
Mobile Cloud Applications to Become More Efficient and Widely Used
Organizations today widely use cloud-enabled applications for customer services as well as for their different operations. Once the widespread use of the 5G network starts, the mobile application will become more efficient and widely used. It will be reflected more in the industries such as healthcare and banking.
Enabling Cloud Service Providers to Reach Customers Reliably and Easily
5G will make a machine to machine communication and larger computing possible. This will make accessing virtual machines via phones a common practice. Mobile users will get more features and options from cloud computing enterprises. Remote workers will access cloud services as hotspots will become faster and uninterrupted.
Complete Transformation of Edge Computing
The emergence of edge computing has solved the issues of unnecessary traffic on the cloud and latency. The need for edge computing became strong when internet penetration and IoT came into existence. Now, G5 will make edge computing grow, making it an essential thing.
G5 will transform edge computing entirely and increase the demand for it. As a result, edge and 5G are becoming mutually reinforcing phenomena. 5G will work on edge computing to provide quick real-time data. This is because edge computing has the potential to provide low latency and higher bandwidth.
Faster Streaming
5G network will surprise companies and entities with its fast data transfer capabilities. It will be ten times faster than the 4G network. It will facilitate storage and faster real-time streaming and thus productivity at its best.
“If everything you touch has to go to a data center and back before you see the animation, you're going to notice. Working at the 5G Lab in a mobile edge cloud, all of a sudden, what we thought would be impossible can happen because the 5G network is so fast.”
- Ian McLoughlin, LiquidSky Software founder, and CEO
Work from any Location
As 5G is ten times faster than 4G in transferring data due to its better connectivity, employees can work from any location. It will make remote work possible anywhere.
Better Security Systems
As technology is ever-evolving, hackers and online frauds come with advanced techniques to steal data. They hold the sensitive information of organizations and do unimaginable damage.
Once 5G is rolled out widely, administrators will recognize such frauds in advance and prepare to mitigate such cyber-attacks.
Summing up
Cloud computing is undoubtedly going to have an impact on cloud computing. The connectivity of 5G is ten times faster than 4G. IT will help people connect to their workplaces from any location. Remote work will make it easier.
Cloud mobile applications will become more efficient and reliable. The service providers will have a good relationship with customers as they will be providing prompt and reliable service in terms of connectivity. Joining together with other technologies such as edge computing, AI, ML, technology is expected to get into another level with the wide roll-out of 5G.
Frequently Asked Questions
How will 5G affect cloud computing?
Cloud computing will have a complete transformation and improvement when 5G is rolled out widely. The 5G connectivity has the features such as cloud virtualization, Ultra-reliable low-latency communication, better latency, increased bandwidth, and more flexible cloud-based management.
How is 5G going to impact lives?
5G is capable of controlling services remotely. In addition, 5G will enhance autonomous driving, personal communication, IoT, AI, and augmented reality. It will also change the way companies store, access, share and protect data.
{
"@context": "https://schema.org",
"@type": "FAQPage",
"mainEntity": [{
"@type": "Question",
"name": "How will 5G affect cloud computing?",
"acceptedAnswer": {
"@type": "Answer",
"text": "Cloud computing will have a complete transformation and improvement when 5G is rolled out widely. The 5G connectivity has the features such as cloud virtualization, Ultra-reliable low-latency communication, better latency, increased bandwidth, and more flexible cloud-based management."
}
},{
"@type": "Question",
"name": "How is 5G going to impact lives?",
"acceptedAnswer": {
"@type": "Answer",
"text": "5G is capable of controlling services remotely. In addition, 5G will enhance autonomous driving, personal communication, IoT, AI, and augmented reality. It will also change the way companies store, access, share and protect data."
}
}]
}
Read More
Enterprise Mobility, Mobile Infrastructure
Article | June 16, 2023
Network security today is losing the battle and a lot of it is blamed upon the traditional security devices. Imagine running next-gen IT Infrastructure secured by security tools made to secure legacy IT.Data breaches have increased substantially and IT professionals are continuously looking at new ways to improve their network security. In this scenario, SD-WAN emerges as one formidable option to implementthat will bolster your network security.
Table of Contents:
- What is SD-WAN?
- How does SD-WAN work?
- What are the main benefits of SD_WAN to network security?
- What are the other advantages of SD-WAN?
.
Let’s dig into it.
What is SD-WAN?
SD-WAN stands for software-defined wide area network (or networking). A WAN is a connection between local area networks (LANs) separated by a substantial distance—anything from a few miles to thousands of miles. The term software-defined implies the WAN is programmatically configured and managed. So, it can be easily adapted quickly to meet changing needs.
How does SD-WAN work?
An SD-WAN connects end users to virtually any application, hosted at any location (e.g., in the public cloud or a company data center), via the best available or most feasible transport service, whether that’s an MPLS (Multiprotocol Label Switching), broadband, cellular or even satellite internet link. To deliver this level of flexibility and performance to users in digital workspaces, an SD-WAN utilizes a control function that continuously analyzes traffic flows across the WAN and intelligently directs traffic in accordance with current policies.
Centralized control
The primary means of control in an SD-WAN is centralized. It often resides in a SaaS application running on a public cloud. Control is decoupled from the hardware to simplify network management and improve the delivery of services. SD-WAN appliances (and virtual appliances) follow operational rules passed down from the central controller. This greatly reduces or eliminates the need to manage gateways and routers on an individual basis.
Multi-connection, multi-transport
SD-WAN gateways support hybrid WAN, which implies that each gateway can have multiple connections using different transports—MPLS, broadband Internet, LTE, etc. A virtual private network (VPN) is typically set up across each WAN connection for security. Consequently, the SD-WAN can be an overlay spanning a diverse communications infrastructure.
Dynamic path selection
Another feature of SD-WAN is dynamic path selection—the ability to automatically and selectively route traffic onto one WAN link or another depending on network conditions or traffic characteristics. Packets may be steered onto a particular link because another link is down or not working very well, or to balance network traffic across all available links. SD-WAN can also identify packets by application, user, source/destination, etc. and send them down one path or another based on those characteristics.
Policy-based management
Policy is what determines where dynamic path selection will steer traffic and what level of priority (quality of service, or QoS) it is given. Business intentions can be implemented as policies via the central management console. New and updated policies are translated into operational rules and downloaded to all SD-WAN gateways and routers under control.
For example, to ensure the best performance for VoIP and interactive web conferences, a policy may be created by giving their packets transmission priority and routing them onto low-latency paths. Cost savings can be realized by sending file back-ups across a broadband Internet connection. WAN traffic that requires a high level of security can be restricted to private connections (e.g., MPLS) between sites and required to pass through a robust security stack when entering the enterprise.
Service chaining
SD-WAN has the ability chain itself together with other network services. WAN optimization (acceleration) is often combined with SD-WAN to improve network and application performance. Internet traffic leaving and entering a branch office may be routed across a VPN to a cloud-base security service to strike a balance between performance, security, and cost.
Read more: GET THE MOST OUT OF YOUR SD-WAN: FEATURES YOU NEED TO START USING TODAY
What are the main benefits of SD_WAN to network security?
Eliminate VPN concerns
One of the first areas in which SD-WAN impacts security is when a company uses the internet as a method of transport.
Before SD-WAN came along and companies were using internet as a backup or even a primary transport method, they would build a VPN or a DMVPN to ensure secure transport of their traffic. This introduces a couple of issues, the first of which is this proliferation of VPNs that has to be managed. The company must have firewalls sitting at their data center, along with a VPN device or firewall sitting in the remote locations to be able to do these VPNs. Every site is dependent on the effort to be up on the network.
- Hamza Seqqat, Director of Solutions Architecture, Apcela
Failover is an issue with this VPN approach, he said. Companies can’t seamlessly failover from a fiber-based type of transport without having to strike some keys in between. It's hard and expensive to do seamless failover.
“Now you don't have to have firewalls for VPNs. You don't have to worry about building your own VPNs or encrypting your traffic,” Seqqat said. “Every SD-WAN product comes with a controller that takes care of things seamlessly. That means there is this smart software-defined engine that builds all these IPsec tunnels between all the locations as soon as you plug the device in. You're not actually having to build a VPN—the controller does it automatically for you, so all you have to do is give the device an IP address or enable DHCP and let it pick an IP address from the DHCP server. Suddenly it's on the network and its building tunnels to all the sites.”
He added that the SD-WAN controller builds a full mesh, so it can talk to every one of the sites without having to go back to the data center. This feature alone can reduce a company’s security footprint significantly because the site-to-site traffic becomes secure, easy, and seamless.
Reduce traffic going through security
A second significant benefit of SD-WAN that impacts security strategy is that it reduces the amount of traffic that needs to go through security parameters because all site-to-site traffic is encrypted. This makes security a bit easier to manage.“For a lot of companies, when they do VPNs for site-to-site traffic, they have to go through firewalls or some kind of encryption mechanism, and that increases their security footprint. It increases the complexity and the cost of security,” Seqqat said. “SD-WAN changes how traffic is routed through security.”
Seqqat gave an example of a site that has a gig worth of bandwidth, and out of that gig of bandwidth, some traffic goes to the internet and some goes to site-to-site.
“Without SD-WAN, generally you would have to run that whole gig through a firewall, and the firewall will split the traffic into what goes to the data center and what goes to the internet,” he said. “When you do SD-WAN, you don't have to do that. You can separate the traffic at the SD-WAN with a split tunnel, so you take half of the traffic and push it through the firewall to go to the internet and the other half goes straight site-to-site without having to go through a security parameter. Now you have a firewall to handle 500 megs as opposed to a gig, and that makes a huge difference because most security products are based on throughput and utilization. So, that can bring some cost benefits and ease management as well.”
Security inherent to SD-WAN
A third area where SD-WAN changes security strategy is the fact that certain security features can be implemented directly through the SD-WAN platform, which reduces costs and complexity in the actual security platform.
“This depends on what aspects of security you're talking about,” Seqqat said. “For example, security is included in the Silverpeak SD-WAN product, so the Silverpeak devices really do most of the security for you. You don't have to deploy another firewall on top of that. With Versa’s SD-WAN, you can virtualize the firewall, so there’s no need to deploy physical firewalls.”
For sites that simply need very basic security, SD-WAN has some inherent security capabilities. It can do things such as allow and deny certain sites and limit traffic that goes to certain sites.
When you look at most SD-WAN products, you can usually kind of steer toward one or another based on your security requirements. Deploying SD-WAN in itself can really eliminate the need for security at several locations or extend the security you have been using.
- Hamza Seqqat, Director of Solutions Architecture, Apcela
Simplify use of security platforms
In his final point, Seqqat said SD-WAN providers are making a lot of progress in partnering with both cloud security providers and cloud service providers. By making traffic encrypted and secure via SD-WAN, security platforms will only have to deal with public internet traffic.
“SD-WAN providers are really working towards partnering and certifying different security products,” he said. “Consider Zscaler as an example. Some SD-WAN products automatically route all your traffic through Zscalar, which does a cloud-based security parameter before it goes out to the internet or to cloud service providers.”
Seqqat said the most important part comes in the fact that Zscalar is distributed across 35 or 40 data centers that are all security parameters.
“Making that routing decision as to what data center your traffic goes through before it goes out to the Internet is extremely important to performance,” he said. “If your Office 365 instance is hosted in Seattle and your users in Europe are trying to reach that, which Zscalar data center the traffic is going to go through before it goes through the Seattle instance of O365 makes all the difference in what latency is going to be at round trip.
“SD-WAN provides somewhat of an automation and optimization of how traffic goes through Zscalar data centers based on performance metrics. SD-WAN can pull latency and jitter and packet loss and all that kind of stuff, so there is some intelligence that happens when a routing decision is being made as to where user traffic is going to go for security scrubbing or security features before it goes out to the cloud provider or to the Internet. That’s a huge feature that comes into play whenever you deploy SD-WAN.”
Read more: FOR SERVICE PROVIDERS SD-WAN IS A MIXED BLESSING
What are the other advantages of SD-WAN?
SD-WAN has many advantages when implemented well:
More predictable and reliable application performance, which helps support users in any digital workspace, across all connections. Superior connection security for cloud applications, without the performance tradeoffs of MPLS backhauling. Congestion reduction due to lack of bandwidth or brownouts with aggregation of bandwidth via multiple bonded and disparate or redundant links.
More reliable access to apps and fewer slowdowns due to congestion.
Resiliency and redundancy with fast failover when outages impact WAN connections.
Quality of service for prioritizing business-critical application traffic.
Fast deployments that fuel business agility when bringing applications online at a branch office, or simply changing the configurations. Zero-touch provisioning allows fast set up of sites in minutes with local staff instead of hours or days.
Reduced network transport costs and more flexibility through the use of MPLS-alternatives like broadband and cellular. Quick procurement of bandwidth from multiple transport services, contrast to the long lead times needed with legacy WAN carrier-based technologies.
Simplified administration with a centralized console eliminates the complexity of configuring edge devices in the field.
Deep SD-WAN analytics to monitor links for performance characteristics. Analytics benefit administrators who can use them when troubleshooting problems across the WAN.
Simpler branch office infrastructure that doesn’t require management of as many single-function devices
Intelligent traffic steering and dynamic path selection
Integrated security with leading 3rd-party solutions, including those for SaaS security
Conclusion
Interest in SD-WAN among organizations is on the rise, and we hope to see a tremendous rise in its adoption in network security strategies over the next few years. Vendor selection will be one of the factor for successful implementation of SD-WAN, as many are quickly developing new and effective software-defined platforms. An ideal vendor would be the one who effectively addresses your specific pain points and is able to meet your current as well as future requirements.
Read more: SD-WAN SECURITY: THE IMPACT OF ORCHESTRATED SERVICES MULTIPLICITY
Read More
Article | July 6, 2021
The promise of Open vRAN is to give back to mobile operators some form of control over their networks. The “open” refers to the opening of RAN interfaces. It is critical because it gives operators the possibility to buy the radio unit and the baseband unit from different vendors, rather than having to buy an integrated system, and therefore helps them diversify their suppliers and reduce their dependence on traditional vendors. The “v” refers to virtual. Virtualization is about disaggregating hardware and software and enabling the use of commercial off-the-shelf servers, instead of the usual purpose-built hardware, to run network functions in order to increase flexibility and reduce costs.
Across Asia-Pacific, the announcements and activities from operators including Airtel, Axiata, NTT Docomo, Rakuten Mobile, Smartfren and Telkomsel indicate a growing appetite for open and virtualized radio access networks. In countries like India, Indonesia, Malaysia and Thailand, open RAN can for example help to address the challenges of remote connectivity and to deploy a network in places where it has been traditionally difficult to achieve a satisfactory return on investment.
Read More