5G
Article | September 28, 2023
The cloud, robotics, automation, and digital technologies are indispensablefor efficient, adaptable, and dynamic business operations. Artificial intelligence and 5G have evolved to become two of the most revolutionary technologies of the decade. While 5G and AI are capable ofindependently revolutionizing industries and facilitating future experiences, combining the two will be ground-breaking.
The combination of AI with 5G mobile technology has the potential to transform business and society, paving the wayfor new products and services that were previouslyunimaginable.So, let’s check out how AI and 5G can revamp and upgrade businesses.
AI with 5G: Making Network and Devices Better
Using AI on 5G networks and devices will enhance wireless communication and battery, and most importantly, improve the user experience. With the help of machine learning, you can now focus on major wireless issues that are tough to tackle with traditional methods.
The wireless industry has been talking about the ways in which AI can improve 5G networks.AI will significantly impactthe fundamental aspects of 5G network management, including efficiency, deployment, service quality, and security.
One of the less-discussed aspects is how on-device AI will enhance the 5G end-to-end system. Radio frequency awareness (RFA) is at the center of 5G improvements and AI's involvement in the process.Instead of a hand-crafted algorithm, machine learning can decipher the device's RF signals. Improved radio awareness increases device experience, system performance, and radio security.
Embracing 5G for Future Telecom & Business Operations
The fifth generation of mobile technology comes with many use cases that are enough to completely transform almost every industry. As the world gets ready for a substantial transformation, it's important to know what they are and how they can help your business. Presently, 5G is driving three significant global trends.
5G technology will alter connected devices by driving consumer adoption, making them smarter, and making large-scale device integration easier.
Cloud and edge computing depend on accessibility, and 5G will make cloud and edge computing more powerful and accessible than ever before.
As 5G allows algorithms to be much more efficient at collecting and analyzing data at scale, AI becomes more accessible and fundamental for businesses powered by 5G. This can be considered a scientific and ethical endeavor.
PartingThoughts
Like any new technology, there is indeed a lot of hype around 5G's debut. 5G and AI are two synergistic, necessary components driving future advancements. Those whocombine these technologies will have a competitive edge and the opportunity to build future forward brands.Businesses that adopt 5G will not only witness revenue gain but will also emerge as an influential player in the future.
Read More
Network Infrastructure, Network Management
Article | July 27, 2023
Something revolutionary that solves problems becomes a product or service with many trade secrets you cannot afford to let loose in the market. All small, medium, and large businesses worry about how vulnerable they are to threats as far as data sharing within the organization is concerned. This is where a private network comes in.
Every business wants to take a technological leap for scalability. Two of the factors that private networks address are independence from commercial carriers for the network and maintaining the privacy of trade secrets. This helps achieve long-term goals to scale your business.
Powering your enterprise private network with the futuristic speeds of 5G can help your business achieve two goals at once. Take a look at why 5G has now started to matter even more.
Why 5G?
By 2026, the 5G market will reach $667.90 billion, with a CAGR of 122.3% from 2021 to 2026. It is estimated to go beyond $1.87 trillion by 2030. This massive technological transition will forever change how we communicate, process information, and connect with the cloud. A boost in turnkey research and development is one of the vital benefits of 5G that will help your business be one step ahead in the market.
What Makes the 5G Enterprise Private Network Ideal for Small and Medium-Sized Businesses?
A private enterprise network is VPN, LAN, WAN, or cloud-based. High-speed internet and low-latency data sharing or transfer are achieved using fiber optics in a 5G EPN. Expect superior service security, network slicing, enhanced service quality, and no risk of network congestion. Design your 5G EPN as per the software integrations required for your small and medium-sized business. This will allow seamless integration for present and future needs.
5G is about 100 times faster than 4G, leading to incredible speeds and unlocking many never-seen-before possibilities accelerating the speed of research for your enterprise. The network efficiency and the traffic capacity it can handle are 100x. Connecting and sharing data in almost real-time is made possible with 5G.
This means, a private 5G network can reduce the infrastructure needs of relatively more demanding managed wired networks for small and medium-sized businesses supporting 5G ecosystems. But it will keep up with the most advanced wireless technologies of the future and stop supporting older ones. In addition, 5G supports lower power consumption than 4G during data transmission. This means enterprises get better battery life on devices running 5G, including 5G IoT devices.
How Secure is a 5G Enterprise Private Network?
The 5G enterprise private networks are integrated or hybrid EPNs (enterprise private networks) and independent EPNs. It depends on whether your business wants to lease 5G spectrum from the government or a mobile network operator (MNO) and whether you will use a hybrid or independent EPN.
• Integrated 5G EPN: A small business can lease a private 5G line from an MNO. A public 5G network backs a virtual private network (VPN) for medium-to-small businesses. On the other hand, MEC and UPF from a public 5G network are used to set up a local network for large businesses.
• Independent 5G EPN: This is the most secure type of 5G EPN, the independent 5G EPN. It is independently built for your enterprise, owned, operated, and managed by you. You will be handling the RAN, core, edge computing nodes, and the wireless spectrum reserved for your use. These are mostly the goals of a large business that sends and stores data that needs to be very secure.
An independent 5G EPN is the best solution for large enterprises looking for the most secure private network. Also, it applies to businesses dealing with massive amounts of data.
Why Use the Cloud for Storage and Retrieval of Data in 5G EPN?
Access computing resources, data storage, development tools, and applications across the internet with the help of the cloud. The combined features of 5G and a private enterprise network create a healthy environment to implement cloud infrastructure. When thinking about using the cloud to store and get data in a 5G EPN, keep in mind the good things about it.
Interconnected, shared resources
5G speed
Improved reliability
Increased data accessibility
Better privacy and security
Efficient connectivity
Now that we have learned networking fundamentals for a better 5G EPN are resolved with the help of the cloud, let us discover how it can help your business scale.
How Can Your Small, Medium, or Large Business Scale up With a 5G EPN Network Easily?
You can use a 5G enterprise private network, or EPN, to get the most important benefits for a small business.
Speed to promote an industrial digital transformation
IoT readiness
Better control over digital assets.
Improved security
Reliable coverage
Network slicing
Ultra-low latency
Improved bandwidth
Improved quality of service (QoS)
You will have complete control over configuring and customizing your EPN, managed independently by your in-house 5G networks. Explore the future avenues of 5G private networks in detail.
The Future of 5G Private Networks and Wi-Fi with Industrial Use Cases:
According to a study by RAN Research, by 2028, private 5G networks will generate about $23.5 billion, with 19% usage in the manufacturing industry and 12% of the network in the healthcare industry. The deployment of the 5G network and upgraded Wi-Fi standards will likely be saturated by 2024. Most of the investments would be towards upgrading the infrastructure and maintaining the network.
The goal of fierce competition among telecom network operators will be to gain rapid market share, bringing down the cost of usage. The new service providers will garner competition from telecom giants, while 5G private networks from different enterprises will still be dominant and mainstream in providing security, privacy, and data isolation.
Leading Industrial Use Cases
Healthcare: A revolution in healthcare benefiting from 5G technology is bound to happen with their transition to a cloud-native architecture. The need for high-speed and reliable connectivity will arise sooner or later, and 5G private networks will perfectly meet the requirement. The driving forces for healthcare to adopt 5G private networks include the shift to demographics, value-based and patient-centric care, and emergency healthcare. In addition, the use of big data analytics, the internet of medical things (IoMT), better wearable medical technology, hospital remote monitoring systems, e-Health and more will need the speed that 5G offers.
Manufacturing: The Industrial Internet of Things (IIoT) uses private 5G networks. Depending upon the software-defined implementation of the 5G network, 5G does not just allow remote monitoring of production lines; it also regulates maintenance and device lifecycle while powering industrial automation. 5G is also finding its way into implementing augmented reality for troubleshooting electronics, additive manufacturing and 3D printing, automated guided vehicles, camera-based video analytics and more. Collaborative robotics, supply chain optimization, and maintenance using a digital twin are a few other things that are worth mentioning.
Supply Chain: Due to near-shoring, manufacturing and distribution will decentralize. Due to Internet of Things (IoT) devices with sensors, supply chain and shipping logistics companies will be able to reduce delivery times, have better control over warehouse and transportation environments, and offer great asset management services.
Final Thoughts
Finding the right 5G private network type for your enterprise is easy. It offers enhanced security while connecting to the cloud, IoT and more. This would allow the development of futuristic products and services, touching multiple industries, with healthcare, manufacturing, warehousing, and logistics among the top. Keeping trade secrets and the latest research and development secure and enhancing the capabilities by integrating future technologies will improve with a 5G EPN. With a 5G private network for your enterprise being used on a large scale, the future of networking looks bright.
FAQs:
What is the difference between a public 5G network and a private 5G network?
A single location or several locations of the same institution, business, or organization are the focus of a private 5G network. On the contrary, the public 5G network is nationwide with millions of subscribers without being dedicated to serving a single entity. Because of this, 5G EPN infrastructure solutions will probably be used on college campuses, in factories, hospitals, military bases, transportation hubs, and other places.
What is a private 5G network and what are the benefits of a private 5G network?
A 5G private network offers low latency, high bandwidth and multiple connections with access control, which are perfect for business applications for small, medium and large enterprises. Furthermore, 5G private networks allow you to tailor them to your business requirements, making them an excellent investment for your business. Again, while diversifying your business as per customer and market demand, it is crucial to have a networking infrastructure that can adapt to your changing needs. Therefore, a private 5G network becomes even more critical.
How does EPN help in centralization and business continuity?
When implementing business continuity planning and centralization of your organization, a 5G EPN can provide several benefits over a public network. It makes integrations easy, provides high-quality services, improves access control and reliability, and lets your business share resources in the best way for its current and future needs.
Read More
Data Center Networking
Article | July 5, 2023
The RAN (Radio Access Network) architecture for mobile networks includes a remote radio unit (RRU) located at the top of a cell tower, which communicates with a baseband unit (BBU) at the base of the tower. The hardware and communication interfaces are owned by a specific vendor, and its software-driven functionality is tightly coupled within the hardware.
Traditionally, this has worked well for mobile network operators (MNOs). However, there are several drawbacks to consider – for instance, upgrading or changing the wireless network demands physical hardware replacements throughout the network, which is cost-inefficient, labor-intensive, and time-consuming. Furthermore, the equipment and interfaces that connect the hardware are owned by the vendors that originally supplied them, which locks MNOs into existing relationships with them.
Read More
Wireless, 5G
Article | May 18, 2023
5G small cells form the backbone of the modern wireless networks. Learn more about this technology is revolutionizing 5G deployment and enabling various use cases across industries in this article.
Contents
1 Introduction to 5G Small Cells for Modern Businesses
2 5G Small Cells: Overview
2.1 Characteristics of 5G Small Cells
2.2 How Small Cells Fit into 5G Architecture
3 Benefits of 5G Small Cells for Businesses
3.1 Improved Coverage and Capacity
3.2 Enhanced Network Performance
3.3 Lower Latency
3.4 Cost-effectiveness
4 Use Cases for 5G Small Cells
4.1 Urban Areas
4.2 Rural Areas
4.3 Indoor Environments
5 Conclusion
1 Introduction to 5G Small Cells for Modern Businesses
Small cells are low-power radio access nodes that operate in licensed and unlicensed spectrum bands and are typically deployed in areas with high demand for wireless connectivity. They are a vital component of the 5G wireless network architecture and are designed to complement traditional cell towers, providing improved coverage, network capacity, and faster data speeds. Small cells come in several types, including femtocells, picocells, and microcells, and can be deployed according to the use case.
2 5G Small Cells: Overview
2.1 Characteristics of 5G Small Cells
5G small cells are characterized by small form factors and are designed to be compact and discreet for deployment in various settings, such as urban areas, rural areas, indoor environments, and public spaces. In addition, they consume less power than traditional cell towers, making them more energy-efficient. They also operate on high-frequency bands, which enables them to provide faster data speeds and lower latency than traditional cell towers, which makes small cells essential for 5G.
The 5G small cell architecture can be deployed in dense networks, providing better coverage and capacity in areas where traditional cell towers may not be able to reach. Also, a 5G small cell antenna can be configured to provide seamless handoffs between cells, ensuring users have a consistent and uninterrupted wireless experience. These characteristics make them ideal for specific 5G use cases, which will be explored further in the article.
2.2 How Small Cells Fit into 5G Architecture
Small cells and 5G evolution are closely linked, and this technology is an ideal solution for future wireless networks. They offer greater capacity, coverage, and flexibility than traditional cell towers, allowing them to meet the demands of an increasingly connected world.
By operating on high-frequency bands and being deployed in dense networks, small cells in 5G can provide faster data speeds, lower latency, and better coverage than previous generations of wireless networks. Additionally, their small form factor and flexible deployment options allow for use cases like private 5G networks that revolutionize industries.
3 Benefits of 5G Small Cells for Businesses
5G networks will support a massive increase in connected devices, including smartphones, IoT sensors, and other devices. Small cells are critical for achieving the full potential of 5G networks and the exciting new applications and services they will enable.
3.1 Improved Coverage and Capacity
5G small cells offer improved coverage over traditional cell towers in certain situations, particularly in urban areas. Buildings and other obstacles interfere with wireless signals, so the connection quality decreases in areas with such infrastructure. By deploying small cells closer to users, the network can provide better coverage and capacity in these areas.
Small cells can also be deployed indoors, providing better coverage and capacity in buildings and other enclosed spaces. This is important due to poor wireless range, signal interference from walls, and other obstacles. By deploying small cells indoors, the network can provide better coverage and capacity in these areas, improving the overall wireless experience for users.
3.2 Enhanced Network Performance
The deployment of small cells enables network densification, which allows several devices to connect to the network simultaneously. This can help reduce network congestion and improve overall network performance, particularly in urban areas. They can also be configured to provide seamless handoffs between cells, ensuring that users have a consistent and uninterrupted wireless experience. This is important because users often move between different areas with different coverage levels and capacities, providing a streamlined experience.
3.3 Lower Latency
Small cells are designed to operate on high-frequency bands, which enables them to provide faster data speeds and lower latency than prior generations of wireless networks. This is especially important for applications that require real-time communication, such as virtual reality, autonomous vehicles, and remote surgery. By providing faster data speeds and lower latency, small cells can help enhance these applications' performance, providing a better overall user experience.
3.4 Cost-effectiveness
Small cells offer a cost-effective alternative to traditional cell towers, particularly in urban areas with high land and real estate costs. By mounting 5G small cell antennas on existing infrastructure, such as lampposts and buildings, deployment costs can be lowered. Additionally, small cells can be deployed in a modular fashion, allowing for targeted and cost-effective expansion based on the required coverage and capacity. This approach avoids large-scale and expensive deployments of new infrastructure. Moreover, small cells can be powered by low-cost, low-power sources like solar panels or batteries, reducing ongoing operational costs. Furthermore, small cells consume less power than traditional cell towers, resulting in lower energy costs.
4 Use Cases for 5G Small Cells
4.1 Urban Areas
As discussed previously, small cell radio antennas in 5G can improve networks in dense urban environments, alleviating network congestion and improving data speeds. In addition, by deploying small cells in areas with high user demand, network operators can provide targeted coverage and capacity improvements to specific areas, ensuring that users have fast and reliable connectivity.
4.2 Rural Areas
Small cells can be used to extend coverage to underserved or unserved areas by traditional cell towers. They can fill in coverage gaps, providing reliable connectivity to users in rural areas that may not have access to high-quality wireless services. This will enable use cases such as remote workforces in rural areas, smart agriculture, and distance education and training.
4.3 Indoor Environments
Traditional cell towers may not be able to provide reliable connectivity indoors due to physical barriers such as thick walls and ceilings. Small cells can provide targeted coverage and capacity to specific areas, such as conference rooms or shopping malls, where users require high-quality wireless connectivity. In addition to improving range, small cells can help alleviate network congestion and improve data speeds in high-traffic indoor environments.
5 Final Thoughts
Small cells are a crucial element in developing and implementing 5G technology. By leveraging a small form factor and high-frequency band usage, small cells facilitate the deployment of 5G networks in a more cost-effective and targeted manner than traditional cell towers. They support a wide range of use cases by providing reliable and high-quality wireless connectivity to a growing number of devices. They will continue to be a critical technology for businesses and organizations seeking to leverage the benefits of 5G technology.
Read More