DNS-over-HTTPS causes more problems than it solves, experts say

The DNS-over-HTTPS (DoH) protocol is not the privacy panacea that many have been advocating in recent months. If we are to listen to networking and cybersecurity experts, the protocol is somewhat useless and causes more problems than it fixes, and criticism has been mounting against DoH and those promoting it as a viable privacy-preserving method. The TL;DR is that most experts think DoH is not good, and people should be focusing their efforts on implementing better ways to encrypt DNS traffic -- such as DNS-over-TLS -- rather than DoH. The DNS-over-HTTPS protocol is a recent invention. It was created a few years back and was proposed as an internet standard last October (IETF RFC8484) It is already supported on Android, and is scheduled to roll out in both Mozilla Firefox and Google Chrome later this year.

Spotlight

Solutionary

Solutionary reduces the information security and compliance burden, delivering flexible managed security services that align with client goals, enhancing organizations’ existing security program, infrastructure and personnel. The company’s services are based on experienced security professionals, actionable threat intelligence and the ActiveGuard service platform that provide expert security and compliance management. Solutionary works as an extension of clients’ internal teams, providing industry-leading customer service, patented technology, thought leadership, years of innovation and proprietary certifications that exceed industry standards. This client focus and dedication to customer service has enabled Solutionary to boast one of the highest client retention rates in the industry.

OTHER ARTICLES
Enterprise Mobility, Mobile Infrastructure

5G vs. Wi-Fi 6: How Two Wireless Technologies are Revolutionizing the Internet of Things

Article | June 16, 2023

The year 2020 was supposed to be a breakthrough year for many technologies but, most businesses have now been forced back into building an infrastructure to transit their workforce to work remotely and ensure continuity of workflow. Nevertheless, an unprecedented set of events have pushed several industries to accelerate the adoption of technologies as they continue to work from home. 5G and Wi-Fi 6 are two tech advancements that have been turning eyes around the world since their introduction. The two wireless technologies are well on their way to revolutionize the Internet of Things as businesses move fast towards digitization and the world is excited. Table of Contents: - Wi-Fi 6: A Breakthrough in Wireless Technology - 5G: For a Better Connected World - How are Wi-Fi 6 and 5G Transforming the IoT? - 5G and Wi-Fi 6: Rivals or Allies? Wi-Fi 6: A Breakthrough in Wireless Technology The next-generation Wi-Fi with boosted speed was introduced last year to meet the demand for faster internet amongst the rising internet users. But, Wi-Fi 6 is simply more than a tweak in the speed. Technically called 802.11ax, Wi-Fi 6 is the advancement in the wireless standard doing the same basic things but with greater efficiency in the device-dense areas, and offering much greater bandwidth than its predecessor 802.11ac or Wi-Fi 5. Wi-Fi 6 promises a speed up to 9.6 Gbps up four times than that of Wi-Fi 5 (3.5Gbps). In reality, this is just a theoretical maximum that one is not expected to reach. Even still, the 9.6Gbps is higher speed and doesn’t have to go to a single device but split up across a network of devices. A new technology in Wi-Fi 6 called the Target Wake Time (TWT) lets routers set check-in times with devices, allowing communications between the router and the devices. The TWT also reduces the time required to keep the antennas powered to search for signals, which in turn also improves battery life. Wi-Fi 6 also comes with a new security protocol called WPA3, making it difficult to hack the device passwords by simple guesswork. In short, Wi-Fi 6 means better speeds with optimized battery lives, and improved security. 5G: For a Better Connected World 5G is the next in line to replace 4G LTE. While Wi-Fi covers small scale internet requirements, cellular networks like 5G are here to connect everyone and everything virtually on a larger scale. The technology is based on the Orthogonal frequency-division Multiplexing (OFDM) that reduces interference by modulating a digital signal across several channels. Ability to operate in both lower bands (like sub-6 GHz) and mmWave (24 GHz and above), 5G promises increased network capacity, low latency and multi-Gbps throughput. 5G also uses the new 5G NR air interface to optimize OFDM to deliver not just better user experience but also a wider one extending to many industries, and mission-critical service areas. The 5G technology, in a nutshell, has brought with it ultra-high speeds, increased and scalable network capacity, and very low latency. How are Wi-Fi 6 and 5G Transforming the IoT? 5G and Wi-Fi 6 will fill up the speed gaps that our existing networks are not able to especially, in crowded homes or congested urban areas. It's not just about the speed. The two wireless technologies will increase network capacity and improve signal strengths. On the business front, 5G and Wi-Fi 6 are both living up to the hype they created since their introduction. Wi-Fi 6 has emerged, as the enabler of converged IoT at the edge. It has put IT into OT applications, connected devices and processed data from devices such as IP security cameras, LED lighting, and digital signage with touch screen or voice command. Wi-Fi 6 can now be used in office buildings for intelligent building management systems, occupancy sensors, access control (smart locks), smart parking, and fire detection and evacuation. It’s (Wi-Fi 6) built for IoT. It will connect many, many more people to mobile devices, household appliances, or public utilities, such as the power grid and traffic lights. The transfer rates with Wi-Fi 6 are expected to improve anywhere from four times to 10 times current speeds, with a lower power draw, i.e. while using less electricity. - Tom Soderstrom, IT Chief Technology and Innovation Officer at NASA’s Jet Propulsion Laboratory (JPL) Similarly, 5G will open doors for more devices and data. It will increase the adoption of edge computing for faster data processing close to the point of action. The hype around 5G is because of the three key attributes it comes with: enhanced mobile broadband (eMBB), ultra-reliable low-latency (uRLLC), and massive IoT device connectivity (mMTC). But there is the fourth attribute that sets it apart from its predecessor: use of a spectrum that operates at the low-end frequency range (typically 600 MHz). Called as ‘low-band 5G’, it delivers high speeds with signals that go for miles without propagation losses and ability to penetrate obstacles. The 5G operates in the new millimetre-wave bands (24 to 86 GHz) delivering more capacity to enable many low-power IoT connections. If we were to point down the benefits, these two wireless technologies are bringing to the Internet of Things those would be: Increased Human-Device Interactions Increased Data and Devices More IoT investments Advancing to the Edge Acceleration towards Industrial IoT Enhanced use of IoT devices Better VUI 5G and Wi-Fi 6: Rivals or Allies? In February, Cisco estimated that by 2023 M2M communications will contribute to 50% or about 14.7 billion of all networked connections. Cisco’s Annual Internet Report reveals that 5G will enable new IoT applications with greater bandwidth and lower latencies and will accelerate innovations at scale. The same report estimates that 10.6% of global mobile connections in 2023 will be 5G, while Wi-Fi 6 hotspots will be 11.6% of all public Wi-Fi hotspots growing 13 times from 2020 through 2023. Wi-Fi6 will serve as a necessary complement to 5G. A significant portion of cellular traffic is offloaded to Wi-Fi networks to prevent congestion and degraded performance of cellular networks (due to demand). - Thomas Barnett, Director of Thought Leadership, Cisco Systems The two technologies are here to feed different data-hungry areas with gigabit speeds. With lower deployment costs, Wi-Fi 6 will be dominating the home and business environments where access points need to serve more users covering devices like smartphones, tablets, PCs, printers, TV sets, and streaming devices. With an unlicensed spectrum, the performance of Wi-Fi 6 depends on the number of users, that are using the network at the same time. 5G, with its longer range, will deliver mobile connections and accelerate smart city deployments and manufacturing operations. Like LTE, 5G speeds will depend upon users’ proximity to base stations and the number of people using that network. The performance of the two depends largely on the area where they are being deployed. For instance, Wi-Fi can very well handle machine-to-machine communications in a managed manufacturing unit, whereas 5G can enhance campus-wide manufacturing operations efficiently. Businesses will have a decision to make which among the two wireless networks fulfils their data appetite. In conclusion, the two wireless technologies continue to develop in parallel and causing the next big wave in the Internet of Things.

Read More
Network Management, Network Security

4G vs. 5G: We Explain the Difference and Why You Need to Care

Article | July 17, 2023

Latency – the time it takes for devices to communicate with each other or with the server that’s imparting information – was already pretty low with 4G, but 5G will basically make it disappear. This development is great news for new tech forays into remote real-time gaming and self-driving cars, as the communication needs to be instantaneous for hiccup-free gameplay and to guarantee the safety of passengers. lthough there has been much media coverage regarding 5G’s health-related dangers and conspiracy-driven connection to the coronavirus, many people are still in the dark about what the 5G network can bring to the everyday internet user.

Read More
Network Infrastructure, Network Management

Edge Computing and the Future of the Data Center

Article | July 10, 2023

If you are clued into IT, then most likely, you are aware of the latest trending technology, edge computing data centers. Edge Computing ensures exceptional speed, with firm privacy and security compared to the conventional cloud methods, thus making edge data centers an imperative option for everyone. The world is undoubtedly moving faster, thereby perpetually pushing the power of next-generation innovation. Edge computing data center has emerged as a substitute to cloud computing, that keeps the data processing power at the “edge” of the network. But, it also comes with a set of challenges to the network. Edge computing devices that have processing functions are expensive and to operate the older version, additional equipment is required, which incurs extra expenditure. Despite the challenges, edge computing has turned out to be the biggest technology investment. So, let’s break it down here with comprehensive details to understand how this latest trending technology is all set to shape the future of the data center. A Brief on Edge Computing The word edge refers to the literal geographic distribution that brings computation and data storage nearer to the data sources. It improves the response duration and saves bandwidth as it runs fewer processes in the cloud and shifts those processes to local destinations such as on a user’s computer, an edge server, or an IoT for that matter. In a nutshell, edge computing is a topology that enables data to be analyzed, processed, and transferred at the edge of a network, It helps diminish the long-distance communication that takes place between a client and server. A significant advantage of using edge computing lies in its high speed and better reliability. In addition, it offers improved security by distributing processing, storage, and applications across wide-ranging devices and data centers. What’s more, it paves the way for a budget-friendly route to scalability as well as versatility, enabling organizations to expand their computing capabilities through an amalgamation of IoT devices and edge computing data centers. Edge Data Centers and Their Usage! There isn’t any specific explanation that would describe the idea of an edge data center, considering it isn’t one consistent style of the facility. It instead consists of smaller facilities that serve both edge computing and larger-scale cloud services. Since they are located closer to the population, they could easily extend the edge of the network to deliver cloud computing resources and cached content to end-users. Typically, they connect to a larger central data center or multiple computer data centers seamlessly. Latency has forever been a matter of concern for cloud data center managers. In recent times, it has emerged as a key obstacle due to big data, the Internet of Things, cloud and streaming services, and other technology trends. Moreover, in today’s time and age, end-users and devices demand access to applications and services anytime and anywhere, which leaves no room for latency. Consequently, companies across the spectrum are establishing edge data centers to ensure cost-effective and high-functionality ways to provide customers with content and performance. A great way to learn more about the data center would be to understand its usage. The following are some of the services that primarily rely on edge computing: Internet of Things Internet of Things tools essentially require low latency and reliable connections to the data center to function with high intensity. IoT devices add up a vast number of edge computing utilities; thus using edge computing makes it simple and effective. Streaming Content Streaming content is one of the most consumed form of infotainment. Users today want their video to get started with a single click that edge facilities help achieve. Drones While Drones are increasingly getting popular, their features are also massively advancing. For example, with edge computing, drones could be controlled even from far-flung locations without any hitch. Artificial Intelligence AI is one of the most thriving technologies that have taken over the world with its magnificent scalability, To make AI advantageous to the system, it should be able to access data, process it, and communicate with the end-users effectively and quickly which an edge data center allows. Virtual Reality Virtual Reality needs to get updates as quickly as possible to create an immersive world for the users. Though primarily associated with gaming, VR has also gained recognition for different paradigms such as communication, education, and several other significant uses. Edge Computing and Data Centers – The Future! A dedicated 5G Provider Edge Computing is underway, building mammoth telecommunications capabilities into data center growth trends. These facilities could change the dynamics of 5G providers for enterprise brands and emerge as the dedicated 5G providers for organizations. Support sustainable business goals Edge data centers are being looked to as a periphery that can help build more efficient solutions to enable the sector’s sustainability. Edge computing is specifically designed to keep applications and data closer to devices and their users. Therefore, there is little doubt over the impact that edge computing will have on sustainable business goals. Making way for Robot Security Guards Evolution in AI and IoT has drastically changed the human staffing needs inside the data centers and made way for Robots. Currently, Robots have been deployed in some of the hyper-scale data centers for specific tasks. Whether it is the automated inspection, faulty disc locating, or disc charging, with Robots at the helm of affairs, everything can be completed seamlessly. Many data center and robotics professionals are predicting that the next couple of years will be big leaps when it comes to placing more robotics in the data center environment. Bill Kleyman - now Switch EVP of digital solutions - wrote in 2013. How Does One Choose a Location For a Data Center? Data centers are a critical part of any business enterprise operations. Hence, decisions regarding its locations cannot be relegated to an arbitrary choice. In the past, companies used to set up their edge data centers closer to their offices to maintain the proximity. However, that is swiftly changing now as the equipment administration and monitoring can be achieved remotely. With the data center industry transforming, performance is no longer the sole consideration. To create a defining success of the data centers, companies are now looking for different sites for their data centers, primarily focusing on factors like economic, political, social, and geographical. The current scenario highlights the significance of considering Energy efficiency, business continuity plan, and resource optimization. With so much at stake, the edge data centers should be effortlessly accessible. Conclusion Edge computing and data center growth has garnered a lot of interest among the users over the past few years. It will continue to thrive for many more years to come as it meets the eye of the global tech demands and the current and future needs of the users worldwide. Frequently Asked Questions What are the benefits of edge computing? One of the top benefits of edge computing is its quick response time and low latency period across all devices. It also simplifies the bandwidth and creates less risk in corporate security. What are the drawbacks of edge computing? A significant drawback of edge computing is the need of a huge storage capacity. The security challenge is also relatively high due to the massive amount of data stored in it. Moreover, the expensive cost factor is also a disadvantage of it. { "@context": "https://schema.org", "@type": "FAQPage", "mainEntity": [{ "@type": "Question", "name": "What are the benefits of edge computing?", "acceptedAnswer": { "@type": "Answer", "text": "One of the top benefits of edge computing is its quick response time and low latency period across all devices. It also simplifies the bandwidth and creates less risk in corporate." } },{ "@type": "Question", "name": "What are the drawbacks of edge computing?", "acceptedAnswer": { "@type": "Answer", "text": "A significant drawback of edge computing is the need of a huge storage capacity. The security challenge is also relatively high due to the massive amount of data stored in it. Moreover, the expensive cost factor is also a disadvantage of it." } }] }

Read More

Time for telcos to step up on 5G app collaboration opportunities for consumers

Article | July 9, 2021

The path to offering 5G rich apps for consumers is complex, especially in terms of both investment versus straight collaboration (with less risk). Even the telco behemoths are trying to get this right. But Omdia has identified six ways operators can participate in 5G rich apps development. One refreshing initiative sees telcos partnering with other telcos to lower barriers to entry to XR content via the Global XR Content Telco Alliance.

Read More

Spotlight

Solutionary

Solutionary reduces the information security and compliance burden, delivering flexible managed security services that align with client goals, enhancing organizations’ existing security program, infrastructure and personnel. The company’s services are based on experienced security professionals, actionable threat intelligence and the ActiveGuard service platform that provide expert security and compliance management. Solutionary works as an extension of clients’ internal teams, providing industry-leading customer service, patented technology, thought leadership, years of innovation and proprietary certifications that exceed industry standards. This client focus and dedication to customer service has enabled Solutionary to boast one of the highest client retention rates in the industry.

Related News

Enterprise Mobility,Mobile OS

MATRIXX Software’s Digital Commerce Platform Available in Microsoft’s Azure Marketplace

MATRIXX | January 27, 2023

5G monetization solutions leader, MATRIXX software, yesterday announced that the MATRIXX Digital Commerce Platform (DCP) is now available on the Microsoft Azure Marketplace, an online store providing software and services to be used with the Azure cloud computing platform. MATRIXX DCP, a cloud native monetization platform gives Communications Services Providers (CSPs) a wide range of monetization options, making it simpler to take advantage of 5G revenue prospects. By installing MATRIXX DCP on Azure Kubernetes Service (AKS), CSPs may take full advantage of the reliable Azure cloud platform's benefits for the vital goal of monetizing new and cutting-edge services. With a no-code, cloud-native, real-time platform, MATRIXX DCP, a 3GPP-compliant converged charging solution, enables telcos to monetize at web scale. With MATRIXX DCP, operators can scale swiftly in the 5G era and beyond, create differentiated digital consumer experiences, and drive innovation. Marc Price, CTO at MATRIXX Software, said, “Multi-cloud deployments are increasingly important for operators around the world, and are defining the next era of telecommunications.” He further added, “MATRIXX empowers our customers to have access to advanced monetization capabilities, wherever they choose to deploy. Microsoft is a trusted cloud ecosystem partner for CSPs, and with MATRIXX DCP in the Microsoft Azure Marketplace, telcos can easily procure and deploy monetization capabilities for emerging services.” About MATRIXX Software Matrix Software provides converged charging and commerce solutions. It’s cloud-native Digital Commerce Platform offers mission-critical, network-grade software that opens new prospects for network monetization. MATRIXX gives service providers the agility they need to quickly build, deploy, and monetize new products and services because to its no-code configuration features. Many of the world’s top IoT players, network infrastructure providers, and communications firms run on the MATRIXX platform. Utilizing business innovation and on-demand customer experience through MATRIXX enables businesses to compete better, produce new revenue, and pursue growth possibilities across markets and verticals.

Read More

Wan Technologies,Wireless,5G

AMD and Viettel Collaborate on 5G Mobile Network Expansion

AMD | December 05, 2022

AMD and Viettel High Tech (Member of Viettel Group) today announced the successful completion of a 5G mobile network field trial deployment conducted by Viettel and powered by AMD Xilinx Zynq™ UltraScale+™ MPSoC devices. As the largest telecom operator in Vietnam serving more than 130 million mobile customers, Viettel High Tech has a rich history of using AMD radio technology with prior 4G deployments and is now accelerating new networks via new 5G remote radio heads. Designed to meet the growing capacity and performance requirements of mobile users globally, the Viettel 5G mobile network is expected to be completed by the end of 2022. AMD is the exclusive radio unit silicon supplier for Viettel’s indigenous 5G radio development. After the successful completion of the first field trial, Zynq MPSoCs are now set to be extended to an additional 300 Macro 8T8R base stations and 900 5G 8T8R Macro radios. The Zynq UltraScale+ MPSoC was also chosen by Viettel for its first-generation 64T64R Massive MIMO radio which is currently being optimized for field trials. Viettel is developing the next generation of radios to also include Zynq UltraScale+ RFSoC devices, to provide industry-leading integration and higher performance. “Viettel is committed to advancing mobile technology leadership by working closely with AMD to incorporate its adaptable SoC technology into our new generation of 5G networks. Going from VHT's history of making 4G BTS, this decision to scale for the growing demands of 5G was based on evaluating various factors including flexibility, simplification, design stability and the experience of engineers.” Nguyen Vu Ha, general director of Viettel High Tech “5G provides new opportunities to offer higher levels of performance, power efficiency and new services along with increased reliability required to meet the growing data demands of cellular networks,” said Yousef Khalilollahi, corporate vice president of APAC sales, Adaptive and Embedded Computing Group, AMD. “We are proud of our close collaboration with Viettel and remain focused on enabling its mobile network to deliver the optimal end-user experience as well as the flexibility to evolve and grow as Viettel’s user base and required bandwidth continue to increase globally.” About Viettel High Tech As the R&D arm of Viettel Group, Viettel High Tech develops full 5G network architecture including 5 layers: Service/App layers, Core layers, Transportation layers, Access layers, Devices; makes Vietnam one of the few countries that can produce 5G equipment. Collaboration with the leading partners is VHT’s strategy. With the desire to experiment, exchange knowledge, further develop diverse fields, VHT is moving to accompany the international high-tech community. About AMD For more than 50 years AMD has driven innovation in high-performance computing, graphics and visualization technologies. Billions of people, leading Fortune 500 businesses and cutting-edge scientific research institutions around the world rely on AMD technology daily to improve how they live, work and play. AMD employees are focused on building leadership high-performance and adaptive products that push the boundaries of what is possible.

Read More

Network Infrastructure,Network Management,Wan Technologies

Verizon continues to deploy 5G Ultra Wideband faster than expected

Verizon | December 06, 2022

Verizon now covers more than 175 million people with their ultra fast, ultra reliable 5G Ultra Wideband service, and will offer nationwide 5G Ultra Wideband in Q1 2023. The ongoing C-Band rollout is a full 13 months ahead of the original schedule, and continues to accelerate. Less than 21 months after announcing the results of the FCC’s C-band auction and after securing early access to an additional 30 markets this year, Verizon accelerated its build plan and surpassed its goal of reaching 175 million people covered by the end of 2022, a month ahead of schedule. “Our customers don’t stand still and neither does our network. Today, more than one out of every two Americans now have access to 5G Ultra Wideband. We know our customers rely on our service every day and we work for them – continuously enhancing, expanding and improving our wireless network. And as proud as I am to have crossed this milestone, I am equally proud of the way we are building our network – with the most advanced technologies, industry leading security, a robust fiber underpinning and a robust and varied spectrum portfolio. We are building this right. We are building this as a platform for innovation for years to come.” Hans Vestberg, Chairman and CEO of Verizon. Verizon’s 5G Ultra Wideband brings power and performance comparable to a wired broadband internet connection to customers’ pockets. With download speeds up to one gigabit per second and the capacity to support data-heavy actions, 5G Ultra Wideband frees people up to do things on the go that many could only do before when connected to their home internet service. This includes everything from downloading huge documents and seamlessly streaming movies in HD audio and video, to playing console quality games and conducting video chats, video conferencing and FaceTime calls with clear sound and video. Verizon customers have much more to look forward to Verizon will continue to build out its 5G Ultra Wideband network using C-band spectrum providing service for millions more customers in the coming months, but Verizon’s engineers are not losing sight of the other critical components that will give customers the most reliable, secure, and robust experience possible on the Verizon network. In addition to providing greater coverage, especially in rural and suburban areas, Verizon will also enhance capacity by activating 100 MHz of C-Band spectrum in many markets, a significant step up from the 60 MHz of spectrum available when deployment first began. Once all of its licensed spectrum is made available, Verizon will have up to 200 MHz of C-Band spectrum deployed in many markets, which will provide exceptional speed and capacity. Complementing the wide coverage of Verizon’s premier C-Band spectrum, Verizon will continue deploying 5G on mmWave spectrum which provides for exponential capacity in areas with significantly dense populations such as venues, stadiums, arenas, airports, major metro areas, office complexes and more. mmWave will also continue to be used for private network deployments when enterprise customers need the fastest, most robust 5G service available for their enterprise applications from wireless manufacturing solutions to connected vehicles to remote healthcare and more. In addition to making 5G more accessible to more people, Verizon will continue focusing on building out the advanced technologies that provide increased security, reliability and customized experiences for customers. Those advancements include fully deploying the 5G core with Verizon’s proprietary cloud platform built specifically for telco workloads, advancing the fiber network to handle exponential increases in data traffic, continuing massive virtualization of the network to add programmability and flexibility into the network, using artificial intelligence to drive reliability and performance, continuing to develop edge computing capabilities to drive down latency, and continuing to advance antenna configurations to drive speed and efficiency.

Read More

Enterprise Mobility,Mobile OS

MATRIXX Software’s Digital Commerce Platform Available in Microsoft’s Azure Marketplace

MATRIXX | January 27, 2023

5G monetization solutions leader, MATRIXX software, yesterday announced that the MATRIXX Digital Commerce Platform (DCP) is now available on the Microsoft Azure Marketplace, an online store providing software and services to be used with the Azure cloud computing platform. MATRIXX DCP, a cloud native monetization platform gives Communications Services Providers (CSPs) a wide range of monetization options, making it simpler to take advantage of 5G revenue prospects. By installing MATRIXX DCP on Azure Kubernetes Service (AKS), CSPs may take full advantage of the reliable Azure cloud platform's benefits for the vital goal of monetizing new and cutting-edge services. With a no-code, cloud-native, real-time platform, MATRIXX DCP, a 3GPP-compliant converged charging solution, enables telcos to monetize at web scale. With MATRIXX DCP, operators can scale swiftly in the 5G era and beyond, create differentiated digital consumer experiences, and drive innovation. Marc Price, CTO at MATRIXX Software, said, “Multi-cloud deployments are increasingly important for operators around the world, and are defining the next era of telecommunications.” He further added, “MATRIXX empowers our customers to have access to advanced monetization capabilities, wherever they choose to deploy. Microsoft is a trusted cloud ecosystem partner for CSPs, and with MATRIXX DCP in the Microsoft Azure Marketplace, telcos can easily procure and deploy monetization capabilities for emerging services.” About MATRIXX Software Matrix Software provides converged charging and commerce solutions. It’s cloud-native Digital Commerce Platform offers mission-critical, network-grade software that opens new prospects for network monetization. MATRIXX gives service providers the agility they need to quickly build, deploy, and monetize new products and services because to its no-code configuration features. Many of the world’s top IoT players, network infrastructure providers, and communications firms run on the MATRIXX platform. Utilizing business innovation and on-demand customer experience through MATRIXX enables businesses to compete better, produce new revenue, and pursue growth possibilities across markets and verticals.

Read More

Wan Technologies,Wireless,5G

AMD and Viettel Collaborate on 5G Mobile Network Expansion

AMD | December 05, 2022

AMD and Viettel High Tech (Member of Viettel Group) today announced the successful completion of a 5G mobile network field trial deployment conducted by Viettel and powered by AMD Xilinx Zynq™ UltraScale+™ MPSoC devices. As the largest telecom operator in Vietnam serving more than 130 million mobile customers, Viettel High Tech has a rich history of using AMD radio technology with prior 4G deployments and is now accelerating new networks via new 5G remote radio heads. Designed to meet the growing capacity and performance requirements of mobile users globally, the Viettel 5G mobile network is expected to be completed by the end of 2022. AMD is the exclusive radio unit silicon supplier for Viettel’s indigenous 5G radio development. After the successful completion of the first field trial, Zynq MPSoCs are now set to be extended to an additional 300 Macro 8T8R base stations and 900 5G 8T8R Macro radios. The Zynq UltraScale+ MPSoC was also chosen by Viettel for its first-generation 64T64R Massive MIMO radio which is currently being optimized for field trials. Viettel is developing the next generation of radios to also include Zynq UltraScale+ RFSoC devices, to provide industry-leading integration and higher performance. “Viettel is committed to advancing mobile technology leadership by working closely with AMD to incorporate its adaptable SoC technology into our new generation of 5G networks. Going from VHT's history of making 4G BTS, this decision to scale for the growing demands of 5G was based on evaluating various factors including flexibility, simplification, design stability and the experience of engineers.” Nguyen Vu Ha, general director of Viettel High Tech “5G provides new opportunities to offer higher levels of performance, power efficiency and new services along with increased reliability required to meet the growing data demands of cellular networks,” said Yousef Khalilollahi, corporate vice president of APAC sales, Adaptive and Embedded Computing Group, AMD. “We are proud of our close collaboration with Viettel and remain focused on enabling its mobile network to deliver the optimal end-user experience as well as the flexibility to evolve and grow as Viettel’s user base and required bandwidth continue to increase globally.” About Viettel High Tech As the R&D arm of Viettel Group, Viettel High Tech develops full 5G network architecture including 5 layers: Service/App layers, Core layers, Transportation layers, Access layers, Devices; makes Vietnam one of the few countries that can produce 5G equipment. Collaboration with the leading partners is VHT’s strategy. With the desire to experiment, exchange knowledge, further develop diverse fields, VHT is moving to accompany the international high-tech community. About AMD For more than 50 years AMD has driven innovation in high-performance computing, graphics and visualization technologies. Billions of people, leading Fortune 500 businesses and cutting-edge scientific research institutions around the world rely on AMD technology daily to improve how they live, work and play. AMD employees are focused on building leadership high-performance and adaptive products that push the boundaries of what is possible.

Read More

Network Infrastructure,Network Management,Wan Technologies

Verizon continues to deploy 5G Ultra Wideband faster than expected

Verizon | December 06, 2022

Verizon now covers more than 175 million people with their ultra fast, ultra reliable 5G Ultra Wideband service, and will offer nationwide 5G Ultra Wideband in Q1 2023. The ongoing C-Band rollout is a full 13 months ahead of the original schedule, and continues to accelerate. Less than 21 months after announcing the results of the FCC’s C-band auction and after securing early access to an additional 30 markets this year, Verizon accelerated its build plan and surpassed its goal of reaching 175 million people covered by the end of 2022, a month ahead of schedule. “Our customers don’t stand still and neither does our network. Today, more than one out of every two Americans now have access to 5G Ultra Wideband. We know our customers rely on our service every day and we work for them – continuously enhancing, expanding and improving our wireless network. And as proud as I am to have crossed this milestone, I am equally proud of the way we are building our network – with the most advanced technologies, industry leading security, a robust fiber underpinning and a robust and varied spectrum portfolio. We are building this right. We are building this as a platform for innovation for years to come.” Hans Vestberg, Chairman and CEO of Verizon. Verizon’s 5G Ultra Wideband brings power and performance comparable to a wired broadband internet connection to customers’ pockets. With download speeds up to one gigabit per second and the capacity to support data-heavy actions, 5G Ultra Wideband frees people up to do things on the go that many could only do before when connected to their home internet service. This includes everything from downloading huge documents and seamlessly streaming movies in HD audio and video, to playing console quality games and conducting video chats, video conferencing and FaceTime calls with clear sound and video. Verizon customers have much more to look forward to Verizon will continue to build out its 5G Ultra Wideband network using C-band spectrum providing service for millions more customers in the coming months, but Verizon’s engineers are not losing sight of the other critical components that will give customers the most reliable, secure, and robust experience possible on the Verizon network. In addition to providing greater coverage, especially in rural and suburban areas, Verizon will also enhance capacity by activating 100 MHz of C-Band spectrum in many markets, a significant step up from the 60 MHz of spectrum available when deployment first began. Once all of its licensed spectrum is made available, Verizon will have up to 200 MHz of C-Band spectrum deployed in many markets, which will provide exceptional speed and capacity. Complementing the wide coverage of Verizon’s premier C-Band spectrum, Verizon will continue deploying 5G on mmWave spectrum which provides for exponential capacity in areas with significantly dense populations such as venues, stadiums, arenas, airports, major metro areas, office complexes and more. mmWave will also continue to be used for private network deployments when enterprise customers need the fastest, most robust 5G service available for their enterprise applications from wireless manufacturing solutions to connected vehicles to remote healthcare and more. In addition to making 5G more accessible to more people, Verizon will continue focusing on building out the advanced technologies that provide increased security, reliability and customized experiences for customers. Those advancements include fully deploying the 5G core with Verizon’s proprietary cloud platform built specifically for telco workloads, advancing the fiber network to handle exponential increases in data traffic, continuing massive virtualization of the network to add programmability and flexibility into the network, using artificial intelligence to drive reliability and performance, continuing to develop edge computing capabilities to drive down latency, and continuing to advance antenna configurations to drive speed and efficiency.

Read More

Events