Adjusting the Network Protocol Bindings in Windows 10

In this blog, we would like to bring to your attention, a new change in how Windows 10 handles network protocol bindings. With Windows 10, you may not see an ‘Adapters and Bindings’ dialog box. Even if you get the ‘Adapters and Bindings’ dialog box, when you make adjustments to the binding order and save, and you re-open the Adapters and Bindings dialog box, you will notice that your changes do not persist. There are no longer any components that utilize the binding order. The only known component that used the binding order was DNS ordering. By default, Windows uses the Route Metric + Interface Metric to determine which route has the highest priority by choosing the route with the lowest value.

Spotlight

Wireless Communications and Electronics

Wireless Communications and Electronics is a full service communications solution provider. Whether your concern is large or small we will stand by your side and determine the best way to meet your needs.

OTHER ARTICLES
5G

HOW PRIVATE 5G NETWORKS CAN CHANGE THE WORLD

Article | September 28, 2023

In an increasingly digital world where every pillar of information is now online, lightning-fast connectivity, rock-solid reliability, and impenetrable security are transforming into essentials within the network industry. 5G transforms the connected ecosystem and pushes the boundaries of connectivity to lay the foundation of a faster, more secure, and sustainable future.

Read More
Network Management, Network Security

Key Network Performance Metrics to Improve Efficiency

Article | July 17, 2023

Discover key network performance metrics to enhance user experience. Explore in-depth latency, throughput, jitter, packet loss, VOIP quality, and MOS score to optimize network performance analysis. Contents 1. Importance of Network Performance Metrics for Performance Analysis 2. Critical Key Network Performance Metrics to Monitor 2.1 Latency 2.2 Throughput 2.3 Jitter 2.4 Packet Loss 2.5 VOIP Qualiy 2.6 MOS Score 3. Steps to Monitor and Measure Network Performance 4. Significance of Monitoring Metrics in Network Troubleshooting 4.1 Provides Network Visibility 4.2 Prevents Network Downtime 4.3 Observe Bandwidth Usage 5. Overcome Monitoring Challenges in Network Performance Metrics 6. Key Takeaway 1. Importance of Network Performance Metrics for Performance Analysis Network performance involves analyzing and evaluating network statistics to determine the quality of services provided by the underlying computer network. Considering various key network metrics, it is primarily measured from the end-users’ perspective. Measuring these metrics, analyzing performance data over time, and understanding the impact on the end-user experience is essential to assess network performance. Measuring network performance requires considering factors such as the location and timing of measurements. For instance, network performance may differ when comparing paths between cities or during periods of varying user demands throughout the day. Therefore, a comprehensive approach to monitoring network performance involves identifying these variables and identifying areas for improvement. Network performance metrics offer valuable insights into any network infrastructure and services. These metrics provide real-time information on potential issues, outages, and errors, allowing one to allocate IT resources efficiently. Understanding end-user demands can create an adaptive network to meet future business needs. However, comprehensive monitoring requires an advanced network monitoring tool to gather, analyze, and interpret data effectively, optimizing network performance. Leveraging relevant metrics can improve network performance, help make informed decisions, enhance network reliability, and deliver a superior user experience. 2. Critical Key Network Performance Metrics to Monitor 2.1 Latency Latency, or network delay, is a crucial performance metric in network monitoring and management. It quantifies the time required to transmit data between destinations. Factors like packet queuing and fiber optic cabling affect network latency. Consistent delays or sudden spikes in latency indicate significant network performance issues. Monitoring and minimizing latency are essential for ensuring optimal network performance. By actively tracking latency, organizations identify and address issues that may cause delays in data transmission, thereby improving overall network responsiveness and minimizing disruptions for end-users. 2.2 Throughput Throughput metrics for network monitoring enable measurement of the data transmission rate across various network segments. Unlike bandwidth, which represents the theoretical data transfer limit, throughput reflects the successful delivery of data packets to their destination. Variations in throughput can occur across different network areas. A low throughput indicates the presence of dropped packets requiring retransmission, and highlights potential performance issues that need attention. Monitoring throughput is crucial for effective network management. By monitoring this performance metric, organizations can gain insights into the actual data transmission rate, ensuring that it aligns with expected levels. 2.3 Jitter Jitter, a key performance metric in network monitoring, refers to the variation in delay between packets, measured as the difference between expected and actual arrival times. It results due to network congestion, routing issues, or other factors, leading to packet loss and degraded application performance. Jitter disrupts the standard sequencing of data packets and can arise due to network congestion or route changes. Monitoring jitter is crucial for identifying and addressing network stability issues and ensuring reliable data transmission. By actively monitoring this performance metric, organizations can address variations in packet delay, mitigating issues that leads to packet loss and enabling proactive troubleshooting. 2.4 Packet Loss Packet loss, a performance management network monitoring metric, represents the number of data packets lost during transmission. It directly affects end-user services, leading to unfulfilled data requests and potential disruptions. Packet loss can arise from various factors, including software problems, network congestion, or router performance issues. Monitoring the entire process precisely to detect and address packet loss, ensures reliable data transmission and optimal network performance. Monitoring packet loss with the right network monitoring software enables timely troubleshooting and optimization of network infrastructure, ultimately enhancing overall network reliability and performance. 2.5 VOIP Quality VoIP (Voice over Internet Protocol) quality is a crucial network performance metric. It refers to the overall performance of a VoIP system in delivering clear and reliable voice communications over the Internet, replacing traditional phone lines. Factors influencing VoIP quality include network bandwidth, latency, packet loss, jitter, and the quality of end-user devices. Monitoring VoIP quality ensures optimal system functionality and high-quality voice communications. Key performance indicators (KPIs) such as mean opinion score (MOS), jitter, latency, packet loss, and call completion rates are utilized to assess and optimize VoIP quality. 2.6 MOS Score Mean opinion score (MOS) is a vital performance metric in network monitoring, rating the perceived quality of a voice call on a scale of 1 to 5. It is a standardized measurement developed by the ITU, an international agency focused on enhancing communication networks. Initially designed for traditional voice calls, the MOS has been adapted to evaluate Voice over IP (VoIP) calls. The MOS score considers various factors, including the specific codec employed for the VoIP call, providing a comprehensive assessment of voice calls quality in network monitoring. 3. Steps to Monitor and Measure Network Performance Step 1: Deploy a Software for Network Monitoring To effectively measure network performance, deploying dedicated network monitoring software is crucial. While temporary tools like traceroutes and pings can provide insights into ongoing problems, they are insufficient for troubleshooting intermittent network issues. Relying on periodic tools for intermittent issues is reliant on chance, as it may only detect problems when they occur during tool usage. By implementing comprehensive network monitoring software, one can proactively monitor and analyze network metrics, historical data, and performance, allowing for timely detection and resolution of both ongoing and intermittent network issues. Step 2: Distribute Monitoring Agents For comprehensive network performance measurement, businesses must distribute monitoring agents strategically across key network locations. These specialized software agents continuously monitor network performance using synthetic traffic, simulating and assessing the end-user perspective. By distributing Monitoring Agents, organizations can: • Measure key network metrics, including jitter, packet loss, and throughput. • Identify and troubleshoot intermittent network issues that are challenging to pinpoint. • Receive alerts regarding any performance degradation, ensuring a timely response. • Collect valuable data for in-depth troubleshooting and analysis, facilitating proactive network management and optimization. Step 3: Measure Network Metrics After deploying the monitoring agents, they continuously exchange synthetic User Datagram Protocol (UDP) traffic, forming a network monitoring session. During this session, the agents measure network performance by evaluating key metrics and conducting network traffic analysis. The metrics used in the analysis include specific parameters, and the results of these measurements are presented in a network response time graph, providing a visual representation of the network's performance characteristics. Monitoring and analyzing these metrics enable organizations to gain valuable insights into network performance, facilitating informed decision-making and convenient network performance troubleshooting. 4. Significance of Monitoring Metrics in Network Troubleshooting 4.1 Provide Network Visibility Monitoring metrics plays a vital role in network troubleshooting by offering network visibility. They enable the identification of performance bottlenecks, configuration problems, and security vulnerabilities that detrimentally affects network performance. These issues can be addressed through targeted troubleshooting efforts, resulting in improved network performance and enhanced end-user experience. Organizations identify and resolve network issues by monitoring metrics, ensuring optimal network functionality and overall business productivity. 4.2 Prevent Network Downtime Effective monitoring metrics are instrumental in preventing network downtime, a costly concern for businesses. Swift identification and resolution of network issues through proactive network performance troubleshooting help minimize downtime, ensuring uninterrupted business operations. By promptly addressing potential problems, network troubleshooting safeguards against lost productivity, revenue, and customer dissatisfaction. Maintaining a proactive approach to monitoring and resolving network issues to enhance network reliability and business continuity. 4.3 Observe Bandwidth Usage Monitoring metrics are essential in network troubleshooting as they enable the observation of bandwidth usage. This allows organizations to detect abnormal or excessive utilization, pinpoint key performance issues and ensure optimal resource allocation. It allows for identifying critical bandwidth-hogging applications or network intrusions, helping experts take immediate action to mitigate risks, safeguard data, and protect the overall network integrity. Additionally, experts can optimize network performance and ensure a seamless user experience for organizations relying on efficient network infrastructure. 5. Overcome Monitoring Challenges in Network Performance Metrics Enterprises seeking to ensure optimal network performance and improve overall business operations must overcome network monitoring obstacles. Effectively monitoring, tracking, and improving network performance requires a strategic combination of skilled personnel, advanced technologies, and well-defined strategies. Failing to address these requirements results in various challenges that hinder the ability to enhance network performance effectively. The challenges that businesses often encounter include managing scalability, handling massive data volumes, achieving real-time monitoring, dealing with multi-vendor environments, addressing network security and privacy concerns, and adapting to evolving network demands. Each obstacle presents unique complexities that require tailored approaches and expert insights. To overcome these challenges, enterprises must invest in comprehensive monitoring tools capable of handling the scalability demands of growing networks. These tools should provide real-time network visibility, robust analytics capabilities, and intelligent data filtering mechanisms to extract meaningful insights from vast network data. Establishing clear monitoring objectives aligned with business goals and defining key performance indicators (KPIs) are essential in effectively addressing network performance challenges. 6. Key Takeaway Monitoring network performance metrics is crucial for assessing the quality of services a computer network provides from an end-user perspective. It involves continuously tracking and analyzing key metrics such as latency, throughput, jitter, packet loss, VOIP quality, and MOS score. Organizations can actively monitor and assess performance, proactively identify intermittent issues, and collect valuable data for in-depth analysis by implementing dedicated network monitoring software and strategically deploying monitoring agents across the network. In addition, it is imperative to emphasize the significance of monitoring metrics in mitigating the potential financial impact of network downtime, enhancing the utilization of available bandwidth resources, and efficiently tackling the complexities inherent in scaling operations, real-time monitoring, diverse vendor ecosystems, security concerns, and the ever-evolving requirements of modern networks.

Read More
Unified Communications, Network Security

Cisco SD-WAN – the easiest way to connect private links to the cloud from your data center or even branches

Article | July 10, 2023

Applications and workloads have been moving to the cloud for some time. This transition has been putting a lot of pressure on IT organizations to support the trend by extending their networks to support cloud connectivity. Cisco SD-WAN enables your hybrid connectivity to the cloud We at Cisco have innovated on multiple fronts to help our customers with this transition by providing a deep level of integration with many of the leading cloud service providers (CSPs), including Amazon Web Services (AWS), Microsoft Azure, and Google Cloud. Here, we highlight one key aspect of this innovation that allows private cloud links to be available as part of the SD-WAN network, enabling hybrid connectivity to the cloud and multicloud. Now our customers can benefit from all the rich features that our Cisco SD-WAN solution offers including application-aware routing, intent-based path selection, and security policy enforcement. Private direct cloud connectivity to CSPs such as AWS Direct Cloud Connect, Google Cloud Interconnect, and Azure ExpressRoute are becoming popular lately, as they provide customers with optimal connectivity similar to what MPLS did in the past, but in a more agile and on-demand fashion. The only problem is those services are normally acquired separately and customers must determine how to manage them as part of a larger WAN solution including configuration, monitoring, and so on. The on-demand nature of these circuits provides customers with major savings, but also turns automation into a key requirement for management. Enter Cisco SD-WAN release 20.6 Beginning with Cisco SD-WAN release 20.6, a Cisco SD-WAN customer may use Cloud OnRamp for Mutlicloud to automate and simplify cloud connectivity across private and public transports. What is great is this task, that used to require hours and days to setup, now only takes minutes as outlined by the following integration documents for AWS, Azure and Google Cloud respectively: Configure AWS Direct Connect as a Transport with SD-WAN in a Click Configure Azure Express Route as Transport with SD-WAN in a Click Configure Google Cloud Interconnect as a Transport with Cisco SD-WAN in a Click Once a customer implements such connectivity, they will have the ability to steer any type of traffic through it with a customizable and flexible SD-WAN policy. This solution also allows customers to eliminate some limitations imposed on them by the CSPs, such as restricting the number of prefixes advertised via BGP over private links, thus providing better scalability and control. For customers who already use Cisco SD-WAN Cloud Interconnect at middle-mile POPs, such as with Equinix or Megaport, rolling out this solution as a test can be extremely simple given the automation discussed above. The best way to find out how easy this solution is, is to try it.

Read More

Meet Delta Sharing: Access more data with secure, open source data sharing

Article | May 26, 2021

If we’ve learned anything in the past year, it’s how much our progress hinges on the ability to share and collaborate around data.During the pandemic, we watched as scientists from around the world raced to develop COVID-19 vaccines in record time. A process that typically takes 10 to 15 years took less than a year—due in part to global collaboration and data sharing. As we transition to the post-COVID-19 era, the “need for speed has never been greater,” says McKinsey. The organizations that will thrive in this new economy will facilitate collaboration, empower individuals and teams, and build impactful partnerships. That success requires shifting from the traditional “don’t share data unless” mindset to a data-sharing mindset grounded in a solid foundation of technology, data-driven culture, and processes.

Read More

Spotlight

Wireless Communications and Electronics

Wireless Communications and Electronics is a full service communications solution provider. Whether your concern is large or small we will stand by your side and determine the best way to meet your needs.

Related News

Best Wi-Fi extenders for improving coverage in your home

NETGEAR | June 21, 2016

Sometimes it doesn't matter where you put your wireless router; the signal just won't be strong enough in some areas of your home. In that case, you should pick up a wireless range extender, sometimes referred to as "boosters" or "repeaters."There are many to choose from, so we've narrowed down our favorites to help keep you connected in every corner of your home.

Read More

Hackers update CryptXXX ransomware to scan networks

June 02, 2016

A new strain of the CryptXXX ransomware has been upgraded to scan for network resources, security researchers have discovered. According to IT security firm Proofpoint, the malware has been upgraded to version 3.100 and bypasses not only currently available decryption tools but also uses SMB (aka Server Message Block) to scan for available network resources and encrypt them. The ransomware also includes the StillerX information stealing DLL, a new payment portal and changed extensions of encrypted files.

Read More

Finding Wireless Networks With Windows 10

June 01, 2016

Windows 10 has its own version of the wireless networks list, and it can be opened from the Notifications area of the taskbar. One way to see the list is to click the Network icon in the Notifications area on the right side of the Windows 10 taskbar; the wireless version looks like radio waves fanning outward. If you do not see the icon, it may be in the Hidden Icons area. Click the small upward-pointing arrow on the taskbar, find the Network icon and drag it back out to the Notifications area.

Read More

Best Wi-Fi extenders for improving coverage in your home

NETGEAR | June 21, 2016

Sometimes it doesn't matter where you put your wireless router; the signal just won't be strong enough in some areas of your home. In that case, you should pick up a wireless range extender, sometimes referred to as "boosters" or "repeaters."There are many to choose from, so we've narrowed down our favorites to help keep you connected in every corner of your home.

Read More

Hackers update CryptXXX ransomware to scan networks

June 02, 2016

A new strain of the CryptXXX ransomware has been upgraded to scan for network resources, security researchers have discovered. According to IT security firm Proofpoint, the malware has been upgraded to version 3.100 and bypasses not only currently available decryption tools but also uses SMB (aka Server Message Block) to scan for available network resources and encrypt them. The ransomware also includes the StillerX information stealing DLL, a new payment portal and changed extensions of encrypted files.

Read More

Finding Wireless Networks With Windows 10

June 01, 2016

Windows 10 has its own version of the wireless networks list, and it can be opened from the Notifications area of the taskbar. One way to see the list is to click the Network icon in the Notifications area on the right side of the Windows 10 taskbar; the wireless version looks like radio waves fanning outward. If you do not see the icon, it may be in the Hidden Icons area. Click the small upward-pointing arrow on the taskbar, find the Network icon and drag it back out to the Notifications area.

Read More

Events