5G
Article | September 28, 2023
Discover key network performance metrics to enhance user experience. Explore in-depth latency, throughput, jitter, packet loss, VOIP quality, and MOS score to optimize network performance analysis.
Contents
1. Importance of Network Performance Metrics for Performance Analysis
2. Critical Key Network Performance Metrics to Monitor
2.1 Latency
2.2 Throughput
2.3 Jitter
2.4 Packet Loss
2.5 VOIP Qualiy
2.6 MOS Score
3. Steps to Monitor and Measure Network Performance
4. Significance of Monitoring Metrics in Network Troubleshooting
4.1 Provides Network Visibility
4.2 Prevents Network Downtime
4.3 Observe Bandwidth Usage
5. Overcome Monitoring Challenges in Network Performance Metrics
6. Key Takeaway
1. Importance of Network Performance Metrics for Performance Analysis
Network performance involves analyzing and evaluating network statistics to determine the quality of services provided by the underlying computer network. Considering various key network metrics, it is primarily measured from the end-users’ perspective. Measuring these metrics, analyzing performance data over time, and understanding the impact on the end-user experience is essential to assess network performance.
Measuring network performance requires considering factors such as the location and timing of measurements. For instance, network performance may differ when comparing paths between cities or during periods of varying user demands throughout the day. Therefore, a comprehensive approach to monitoring network performance involves identifying these variables and identifying areas for improvement.
Network performance metrics offer valuable insights into any network infrastructure and services. These metrics provide real-time information on potential issues, outages, and errors, allowing one to allocate IT resources efficiently. Understanding end-user demands can create an adaptive network to meet future business needs. However, comprehensive monitoring requires an advanced network monitoring tool to gather, analyze, and interpret data effectively, optimizing network performance. Leveraging relevant metrics can improve network performance, help make informed decisions, enhance network reliability, and deliver a superior user experience.
2. Critical Key Network Performance Metrics to Monitor
2.1 Latency
Latency, or network delay, is a crucial performance metric in network monitoring and management. It quantifies the time required to transmit data between destinations. Factors like packet queuing and fiber optic cabling affect network latency. Consistent delays or sudden spikes in latency indicate significant network performance issues. Monitoring and minimizing latency are essential for ensuring optimal network performance. By actively tracking latency, organizations identify and address issues that may cause delays in data transmission, thereby improving overall network responsiveness and minimizing disruptions for end-users.
2.2 Throughput
Throughput metrics for network monitoring enable measurement of the data transmission rate across various network segments. Unlike bandwidth, which represents the theoretical data transfer limit, throughput reflects the successful delivery of data packets to their destination. Variations in throughput can occur across different network areas. A low throughput indicates the presence of dropped packets requiring retransmission, and highlights potential performance issues that need attention. Monitoring throughput is crucial for effective network management. By monitoring this performance metric, organizations can gain insights into the actual data transmission rate, ensuring that it aligns with expected levels.
2.3 Jitter
Jitter, a key performance metric in network monitoring, refers to the variation in delay between packets, measured as the difference between expected and actual arrival times. It results due to network congestion, routing issues, or other factors, leading to packet loss and degraded application performance. Jitter disrupts the standard sequencing of data packets and can arise due to network congestion or route changes. Monitoring jitter is crucial for identifying and addressing network stability issues and ensuring reliable data transmission. By actively monitoring this performance metric, organizations can address variations in packet delay, mitigating issues that leads to packet loss and enabling proactive troubleshooting.
2.4 Packet Loss
Packet loss, a performance management network monitoring metric, represents the number of data packets lost during transmission. It directly affects end-user services, leading to unfulfilled data requests and potential disruptions. Packet loss can arise from various factors, including software problems, network congestion, or router performance issues. Monitoring the entire process precisely to detect and address packet loss, ensures reliable data transmission and optimal network performance. Monitoring packet loss with the right network monitoring software enables timely troubleshooting and optimization of network infrastructure, ultimately enhancing overall network reliability and performance.
2.5 VOIP Quality
VoIP (Voice over Internet Protocol) quality is a crucial network performance metric. It refers to the overall performance of a VoIP system in delivering clear and reliable voice communications over the Internet, replacing traditional phone lines. Factors influencing VoIP quality include network bandwidth, latency, packet loss, jitter, and the quality of end-user devices. Monitoring VoIP quality ensures optimal system functionality and high-quality voice communications. Key performance indicators (KPIs) such as mean opinion score (MOS), jitter, latency, packet loss, and call completion rates are utilized to assess and optimize VoIP quality.
2.6 MOS Score
Mean opinion score (MOS) is a vital performance metric in network monitoring, rating the perceived quality of a voice call on a scale of 1 to 5. It is a standardized measurement developed by the ITU, an international agency focused on enhancing communication networks. Initially designed for traditional voice calls, the MOS has been adapted to evaluate Voice over IP (VoIP) calls. The MOS score considers various factors, including the specific codec employed for the VoIP call, providing a comprehensive assessment of voice calls quality in network monitoring.
3. Steps to Monitor and Measure Network Performance
Step 1: Deploy a Software for Network Monitoring
To effectively measure network performance, deploying dedicated network monitoring software is crucial. While temporary tools like traceroutes and pings can provide insights into ongoing problems, they are insufficient for troubleshooting intermittent network issues. Relying on periodic tools for intermittent issues is reliant on chance, as it may only detect problems when they occur during tool usage. By implementing comprehensive network monitoring software, one can proactively monitor and analyze network metrics, historical data, and performance, allowing for timely detection and resolution of both ongoing and intermittent network issues.
Step 2: Distribute Monitoring Agents
For comprehensive network performance measurement, businesses must distribute monitoring agents strategically across key network locations. These specialized software agents continuously monitor network performance using synthetic traffic, simulating and assessing the end-user perspective.
By distributing Monitoring Agents, organizations can:
• Measure key network metrics, including jitter, packet loss, and throughput.
• Identify and troubleshoot intermittent network issues that are challenging to pinpoint.
• Receive alerts regarding any performance degradation, ensuring a timely response.
• Collect valuable data for in-depth troubleshooting and analysis, facilitating proactive network management and optimization.
Step 3: Measure Network Metrics
After deploying the monitoring agents, they continuously exchange synthetic User Datagram Protocol (UDP) traffic, forming a network monitoring session. During this session, the agents measure network performance by evaluating key metrics and conducting network traffic analysis. The metrics used in the analysis include specific parameters, and the results of these measurements are presented in a network response time graph, providing a visual representation of the network's performance characteristics. Monitoring and analyzing these metrics enable organizations to gain valuable insights into network performance, facilitating informed decision-making and convenient network performance troubleshooting.
4. Significance of Monitoring Metrics in Network Troubleshooting
4.1 Provide Network Visibility
Monitoring metrics plays a vital role in network troubleshooting by offering network visibility. They enable the identification of performance bottlenecks, configuration problems, and security vulnerabilities that detrimentally affects network performance. These issues can be addressed through targeted troubleshooting efforts, resulting in improved network performance and enhanced end-user experience. Organizations identify and resolve network issues by monitoring metrics, ensuring optimal network functionality and overall business productivity.
4.2 Prevent Network Downtime
Effective monitoring metrics are instrumental in preventing network downtime, a costly concern for businesses. Swift identification and resolution of network issues through proactive network performance troubleshooting help minimize downtime, ensuring uninterrupted business operations. By promptly addressing potential problems, network troubleshooting safeguards against lost productivity, revenue, and customer dissatisfaction. Maintaining a proactive approach to monitoring and resolving network issues to enhance network reliability and business continuity.
4.3 Observe Bandwidth Usage
Monitoring metrics are essential in network troubleshooting as they enable the observation of bandwidth usage. This allows organizations to detect abnormal or excessive utilization, pinpoint key performance issues and ensure optimal resource allocation. It allows for identifying critical bandwidth-hogging applications or network intrusions, helping experts take immediate action to mitigate risks, safeguard data, and protect the overall network integrity. Additionally, experts can optimize network performance and ensure a seamless user experience for organizations relying on efficient network infrastructure.
5. Overcome Monitoring Challenges in Network Performance Metrics
Enterprises seeking to ensure optimal network performance and improve overall business operations must overcome network monitoring obstacles. Effectively monitoring, tracking, and improving network performance requires a strategic combination of skilled personnel, advanced technologies, and well-defined strategies. Failing to address these requirements results in various challenges that hinder the ability to enhance network performance effectively.
The challenges that businesses often encounter include managing scalability, handling massive data volumes, achieving real-time monitoring, dealing with multi-vendor environments, addressing network security and privacy concerns, and adapting to evolving network demands. Each obstacle presents unique complexities that require tailored approaches and expert insights.
To overcome these challenges, enterprises must invest in comprehensive monitoring tools capable of handling the scalability demands of growing networks. These tools should provide real-time network visibility, robust analytics capabilities, and intelligent data filtering mechanisms to extract meaningful insights from vast network data. Establishing clear monitoring objectives aligned with business goals and defining key performance indicators (KPIs) are essential in effectively addressing network performance challenges.
6. Key Takeaway
Monitoring network performance metrics is crucial for assessing the quality of services a computer network provides from an end-user perspective. It involves continuously tracking and analyzing key metrics such as latency, throughput, jitter, packet loss, VOIP quality, and MOS score. Organizations can actively monitor and assess performance, proactively identify intermittent issues, and collect valuable data for in-depth analysis by implementing dedicated network monitoring software and strategically deploying monitoring agents across the network. In addition, it is imperative to emphasize the significance of monitoring metrics in mitigating the potential financial impact of network downtime, enhancing the utilization of available bandwidth resources, and efficiently tackling the complexities inherent in scaling operations, real-time monitoring, diverse vendor ecosystems, security concerns, and the ever-evolving requirements of modern networks.
Read More
Network Management, Network Security
Article | July 17, 2023
In today’s shop-from-anywhere world, the model for success continues to change. Tried and true techniques are becoming obsolete as consumer expectations evolve, demand volatility rises, and supply chain disruptions become more frequent. Retailers are also dealing with online shopping surges that add new complexities to existing data strategies due to an influx of raw, unprepped, and largely underutilized data.
Read More
Enterprise Mobility, Mobile Infrastructure
Article | June 16, 2023
Coronavirus (COVID-19) has been relentlessly spreading across the world. Countless events, both international and domestic, big and small, have been either postponed or canceled due to the ongoing pandemic. This was supposed to be the year the 5G network rollout would make the technology mainstream and widely available. But the much-anticipated rollout of the lightning-quick 5G network may now be in the slow lane. Because of the increasing spread of the disease in many European countries, various 5G network spectrum regulators have postponed the long-awaited auction of the 5G spectrum. These auctions were crucial for network providers to launch or expand the already existing 5G network systems.
Read More
Network Infrastructure, Network Management
Article | July 10, 2023
Enhance your network monitoring and management expertise. Learn from the industry-recognized network monitoring certifications and courses to boost your career potential with advanced solutions.
As the demand for robust and secure networks continues to rise, organizations seek professionals with specialized network monitoring and management skills. Individuals can pursue industry-recognized certifications that validate their expertise and provide a competitive edge to demonstrate proficiency in this field. This article presents a curated list of the top 10 network monitoring certifications. These network monitoring and management certifications cover various technologies, methodologies, and tools, equipping professionals with the knowledge to monitor, optimize, and secure network infrastructures effectively.
1. AWS Certified Advanced Networking – Specialty
The AWS Certified Advanced Networking - Specialty course is an essential credential for network monitoring experts seeking to excel in cloud-based environments. It validates expertise in designing and maintaining network architectures within the AWS product portfolio. This is one of the best network certifications for individuals with at least five years of hands-on experience in implementing complex networking solutions. Completing this course will enhance your understanding of advanced network architectures, interconnectivity options, routing, high-availability connectivity solutions, and network security features. The certification exam requires a solid grasp of AWS technology, scripting development, and automation tools. Opting for this course will equip you with the necessary skills to implement cloud initiatives and meet the organizations' networking challenges.
2. GIAC Continuous Monitoring Certification (GMON)
Enhance the ability to detect intrusions and safeguard the network against anomalous activity with GIAC Continuous Monitoring (GMON) certification. As one of the top network monitoring certifications designed for experts to validate proficiency in defensible security architecture, continuous diagnostics and security monitoring, it will offer readers core knowledge of security architecture, endpoint security, and network monitoring. CyberLive testing ensures both theoretical knowledge and hands-on expertise for this certification. You will be able to improve your organization's security posture and respond more quickly to threats with the GMON certification. Technical managers, SOC analysts, and CND analysts must opt for the course to enhance their knowledge of implementing best network monitoring solutions and demonstrate the measures for threat protection.
3. CompTIA Network+
Learn from CompTIA Network+ skills to become a successful network engineer and security practitioner. It is one of the leading IT networking certifications that equips professionals with the skills to troubleshoot, configure, and manage networks on any platform, making it highly versatile and applicable to various environments. Completing this course and attaining the certification can enhance IT infrastructure and improve network management. CompTIA Network+ prepares you to support networks on any platform, unlike other vendor-specific network certifications. This certification is valuable for network monitoring experts looking to enhance networking fundamentals, implementations, operations, and security. Moreover, for those new to the industry, achieving this certification can open up job opportunities as a business analyst, systems administrator, MSP personnel, data center manager, IT server technician, data architect, or network security specialist.
4. PRTG Network Monitoring Course with LAB
The PRTG Network Monitoring Course with LAB is a comprehensive training program designed for network monitoring experts seeking to enhance their skills and knowledge in deploying and managing the PRTG tool. The industry experts will be able to deploy the tool and monitor all infrastructure, including network, server and applications. It is one of the best network monitoring courses that will help you learn about IT operations management solutions that allow monitoring proactively. By opting for this course, readers will benefit from 6-5 hours of practical and condensed knowledge, immediate access to videos and files, Q&A support, downloadable installation media, and valuable links and resources. Overall, the course offers three benefits: rapid detection of network issues and identification of who needs to fix it, better allocation of IT resources with network monitoring, and providing baseline data for automatic data comparison.
5. ManageEngine OPManager Plus Network Monitoring Course
This is one of the top network certification courses that trains individuals to monitor the network for performance storage, bandwidth, configuration changes, compliance and security. MachineEngine OPManager Plus is a complete course offering lab material to download. The uniquely designed course includes all key elements to understand the process of practicing VMware Workstation lab. It is a seven hours, thirty minutes course combined with practical and condensed knowledge. You will be given immediate access once you enroll for the course to collect videos, files and downloadable installation media. The required skill set to opt for the OPManager training video includes basic knowledge of Ethernet TCP/IP and the basics of Windows servers. Network monitoring experts can build a LAB-like real network through this course, analyze dashboards and graphs, and configure NCM and NTA modules.
6. Ultimate PRTG Network Monitoring with Full Lab GNS3
Learn to monitor network devices, applications, servers, and cloud and deploy custom sensors with the Ultimate PRTG network monitoring with a full lab GNS3 certification course. The course begins with an overview of PRTG's main features, covering important concepts like sensors and sensor states, as well as licensing information. It also guides participants in preparing their IT infrastructure for monitoring and provides recommendations for PRTG hardware and operating systems. This ensures a solid foundation before diving into the advanced aspects of PRTG. Opting for this course will help you delve into advanced PRTG sensors, including custom, receiver, and aggregate sensors. It will allow one to explore how to set up custom SNMP sensors, custom script sensors, and flow sensors. The course also focuses on monitoring specific areas of infrastructure, such as virtualization environments, enabling participants to gain expertise in administering PRTG effectively.
7. Network Monitoring Basics
Network Monitoring basics is a course designed to learn how to use network monitoring, it helps you gain ground level base knowledge and guides you on where to start. This course, led by expert instructor Josh Werner, equips beginners entering the networking industry with the necessary skills and knowledge to effectively utilize network monitoring tools. Participants will gain practical expertise in using these open-source solutions for efficient network monitoring and management with a focus on popular software such as Wireshark, Zabbix, Nagios, OpenNMS, Obiko, and NetDisco. This certification is ideal for those seeking to establish a strong foundation in network monitoring, enabling them to monitor and optimize their network infrastructure effectively. By mastering these in-demand skills, learners will be equipped to make informed decisions and ensure the smooth operation of their networks.
8. Network Monitoring Using Nagios
Monitoring infrastructure equipment using Nagios requires training and acquiring the necessary techniques. The 'Network Monitoring Using Nagios Course' enables network monitoring experts to delve into knowledge related to Nagios deployment and configurations within IT infrastructure. To opt for the course, one must fulfil the basic requirements, including familiarity with Linux basic commands and networking essentials. Both network and system administrators, as well as IT students, can benefit from this highly regarded networking certification. The Network Monitoring Using Nagios course consists of three sections and spans two hours and four minutes. It is divided into eleven lectures covering crucial aspects of Nagios implementation and operation.
9. Junos, Associate (JNCIA-Junos)
Junos, Associate (JNCIA-Junos) course is one of the most valuable IT networking certifications for professionals seeking to enhance their knowledge of Juniper Networks Junos OS. This certification is suitable for individuals with beginner to intermediate networking expertise. The JNCIA-Junos exam evaluates your understanding of the core functionalities of Junos OS, serving as a foundational certification for various tracks, including enterprise routing and switching and service provider routing and switching. By opting for this certification, candidates understand Junos OS comprehensively, enabling them to configure and troubleshoot Juniper devices effectively. The course covers essential topics such as routing protocols, switching concepts, security features, and network management
10. CCNA certification
The CCNA (Cisco Certified Network Associate) certification is a credential that enhances your expertise in navigating the dynamic world of IT. This certification encompasses a comprehensive range of topics, including networking fundamentals, IP services, security fundamentals, automation, and programmability. It equips professionals with the skills to effectively manage and optimize advanced networks prevalent in today's technology landscape. The CCNA training course provides a solid foundation for individuals seeking to advance their careers in network monitoring. It caters to network administrators, technicians, and other IT professionals involved in network operations and support. Additionally, as a CCNA-certified expert, you become part of a renowned community recognized for maintaining the highest standards of excellence in networking.
Key Takeaway
The recommended network monitoring certifications discussed in this article provide valuable insights and guidance for networking experts in the B2B sector. These resources cover various aspects of monitoring network performance, enhancing network visibility, and addressing security concerns. By delving into these monitoring courses, professionals can gain a deeper understanding of effective network performance monitoring techniques, ensuring optimal visibility across their infrastructure. With the ever-evolving networking landscape, staying up-to-date with the latest trends and best practices is crucial for maintaining a high-performing network. These courses offer industry-relevant knowledge and empower networking experts to make informed decisions, ultimately leading to a robust and efficient network infrastructure.
Read More